cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328181 a(n) = (-1)^(bigomega(n) - omega(n)) * Sum_{d|n} (-1)^(bigomega(d) - omega(d)) * d.

Original entry on oeis.org

1, 3, 4, 1, 6, 12, 8, 7, 5, 18, 12, 4, 14, 24, 24, 9, 18, 15, 20, 6, 32, 36, 24, 28, 19, 42, 22, 8, 30, 72, 32, 23, 48, 54, 48, 5, 38, 60, 56, 42, 42, 96, 44, 12, 30, 72, 48, 36, 41, 57, 72, 14, 54, 66, 72, 56, 80, 90, 60, 24, 62, 96, 40, 41, 84, 144, 68, 18, 96, 144
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 06 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (-1)^(PrimeOmega[n] - PrimeNu[n]) Sum[(-1)^(PrimeOmega[d] - PrimeNu[d]) d, {d, Divisors[n]}]; Table[a[n], {n, 1, 70}]
    f[p_, e_] := (p^(e+1) - (-1)^e *(2*p+1))/(p+1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 02 2020 *)
  • PARI
    a(n) = (-1)^(bigomega(n)-omega(n))*sumdiv(n, d, (-1)^(bigomega(d)-omega(d))*d); \\ Michel Marcus, Oct 06 2019

Formula

a(p) = p + 1, where p is prime.
Multiplicative with a(p^e) = (p^(e+1) - (-1)^e*(2*p+1))/(p+1). - Amiram Eldar, Dec 02 2020
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/30) * Product_{p prime} (1 + 2/p^2 - 2/p^3) = 0.5507877576... . - Amiram Eldar, Nov 06 2022