cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328260 a(n) = n * omega(n).

Original entry on oeis.org

0, 2, 3, 4, 5, 12, 7, 8, 9, 20, 11, 24, 13, 28, 30, 16, 17, 36, 19, 40, 42, 44, 23, 48, 25, 52, 27, 56, 29, 90, 31, 32, 66, 68, 70, 72, 37, 76, 78, 80, 41, 126, 43, 88, 90, 92, 47, 96, 49, 100, 102, 104, 53, 108, 110, 112, 114, 116, 59, 180, 61, 124, 126, 64, 130, 198, 67, 136, 138, 210
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 09 2019

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [n*(#PrimeDivisors(n)):n in [2..70]]; // Marius A. Burtea, Oct 10 2019
    
  • Mathematica
    Table[n PrimeNu[n], {n, 1, 70}]
    nmax = 70; CoefficientList[Series[Sum[Prime[k] x^Prime[k]/(1 - x^Prime[k])^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n)=n*omega(n) \\ Charles R Greathouse IV, Mar 16 2022

Formula

G.f.: Sum_{k>=1} prime(k) * x^prime(k) / (1 - x^prime(k))^2.
a(n) = bigomega(rad(n)^n).
a(n) = Sum_{d|n} A061397(n/d) * d.
Define f(x) = #{n <= x: a(n) <= x}. Gabdullin & Iudelevich show that f(x) ~ x/log log x. - Charles R Greathouse IV, Mar 16 2022