cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328270 Total number of nodes in all walks on cubic lattice starting at (0,0,0), ending at (0,n,n), remaining in the first (nonnegative) octant and using steps (0,0,1), (0,1,0), (1,0,0), (-1,1,1), (1,-1,1), and (1,1,-1).

Original entry on oeis.org

1, 9, 130, 2401, 50346, 1141030, 27222364, 673340265, 17104148290, 443406172278, 11680186909062, 311667574680190, 8404755004516300, 228659546010880620, 6267500870514732780, 172891678107177498193, 4795723803862121368590, 133668769806498536349670
Offset: 0

Views

Author

Alois P. Heinz, Oct 10 2019

Keywords

Examples

			a(1) = 9: nodes in [(0,0,0),(1,0,0),(0,1,1)], [(0,0,0),(0,1,0),(0,1,1)], [(0,0,0),(0,0,1),(0,1,1)].
		

Crossrefs

Programs

  • Maple
    b:= proc(l) option remember; `if`(l[-1]=0, 1, (r-> add(
          add(add(`if`(i+j+k=1, (h-> `if`(h[1]<0, 0, b(h)))(
          sort(l-[i, j, k])), 0), k=r), j=r), i=r))([$-1..1]))
        end:
    a:= n-> (2*n+1)*b([0, n$2]):
    seq(a(n), n=0..23);
  • Mathematica
    b[l_] := b[l] = If[Last[l] == 0, 1, Function[r, Sum[If[i + j + k == 1, Function[h, If[h[[1]] < 0, 0, b[h]]][Sort[l - {i, j, k}]], 0], {i, r}, {j, r}, {k, r}]][{-1, 0, 1}]];
    a[n_] := (2n+1) b[{0, n, n}];
    a /@ Range[0, 23] (* Jean-François Alcover, May 13 2020, after Maple *)

Formula

a(n) = (2n+1) * A328269(n).
a(n) is odd <=> n in { A000225 }.