A328316
Iterates of A276086 starting from 0.
Original entry on oeis.org
0, 1, 2, 3, 6, 5, 18, 125, 43218, 258413198822535882125
Offset: 0
-
A276086[n0_] := Module[{m = 1, i = 1, n = n0, p}, While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; m];
NestList[A276086, 0, 10] (* Jean-François Alcover, Dec 01 2021, after Antti Karttunen in A276086 *)
-
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A328316(n) = if(!n,0,A276086(A328316(n-1)));
A328317
Smallest prime not dividing A328316(n), with a(0) = 1 by convention; Equally, for n > 0, smallest prime dividing A328316(1+n).
Original entry on oeis.org
1, 2, 3, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2
Offset: 0
Cf.
A020639,
A053669,
A276086,
A326810,
A328316,
A328318,
A328319,
A328322,
A328323,
A328585,
A328586,
A328633.
-
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A328316(n) = if(!n,0,A276086(A328316(n-1)));
A053669(n) = forprime(p=2, , if(n%p, return(p))); \\ From A053669
A328317(n) = if(0==n,1,A053669(A328316(n)));
\\ Or alternatively as:
A020639(n)=if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1)
A328317(n) = A020639(A328316(1+n));
A328322
Maximal digit value used when A328316(n) is written in primorial base; maximal prime exponent in A328316(1+n).
Original entry on oeis.org
0, 1, 1, 1, 1, 2, 3, 4, 7, 49, 430, 74814
Offset: 0
-
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A328316(n) = if(!n,0,A276086(A328316(n-1)));
A328114(n) = { my(s=0, p=2); while(n, s = max(s,(n%p)); n = n\p; p = nextprime(1+p)); (s); };
A328322(n) = A328114(A328316(n));
\\ Or alternatively as, more slowly:
A051903(n) = if((1==n),0,vecmax(factor(n)[, 2]));
A328322(n) = A051903(A328316(1+n));
A328318
Number of nonzero digits in representation of A328316(n) in primorial base; Number of distinct prime factors in A328316(1+n).
Original entry on oeis.org
0, 1, 1, 2, 1, 2, 1, 3, 5, 16, 104, 7447
Offset: 0
Showing 1-4 of 4 results.
Comments