cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A324198 a(n) = gcd(n, A276086(n)), where A276086 is the primorial base exp-function.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 5, 1, 1, 1, 1, 15, 1, 1, 1, 1, 5, 3, 1, 1, 1, 25, 1, 3, 1, 1, 1, 1, 1, 3, 1, 7, 1, 1, 1, 3, 5, 1, 7, 1, 1, 15, 1, 1, 1, 7, 25, 3, 1, 1, 1, 5, 7, 3, 1, 1, 1, 1, 1, 21, 1, 1, 1, 1, 1, 3, 35, 1, 1, 1, 1, 75, 1, 7, 1, 1, 5, 3, 1, 1, 7, 5, 1, 3, 1, 1, 1, 7, 1, 3, 1, 1, 1, 1, 49, 3, 5, 1, 1, 1, 1, 105
Offset: 0

Views

Author

Antti Karttunen, Feb 25 2019

Keywords

Crossrefs

Cf. A324583 (positions of ones), A324584 (and terms larger than one).
Cf. A371098 (odd bisection), A371099 [= a(36n+9)].
Cf. also A328231.

Programs

  • Mathematica
    Array[Block[{i, m, n = #, p}, m = i = 1; While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; GCD[#, m]] &, 106, 0] (* Michael De Vlieger, Feb 04 2022 *)
  • PARI
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
    A324198(n) = gcd(n,A276086(n));
    
  • PARI
    A324198(n) = { my(m=1, p=2, orgn=n); while(n, m *= (p^min(n%p,valuation(orgn,p))); n = n\p; p = nextprime(1+p)); (m); }; \\ Antti Karttunen, Oct 21 2019

Formula

a(n) = gcd(n, A276086(n)).
From Antti Karttunen, Oct 21 2019: (Start)
A000005(a(n)) = A327168(n).
a(A328316(n)) = A328323(n).
a(n) = A324580(n) / A328584(n).
(End)

A328316 Iterates of A276086 starting from 0.

Original entry on oeis.org

0, 1, 2, 3, 6, 5, 18, 125, 43218, 258413198822535882125
Offset: 0

Views

Author

Antti Karttunen, Oct 14 2019

Keywords

Comments

The unique infinite sequence such that a(0) = 0, a(n) = A276085(a(n+1)) for n >= 0, and A129251(a(n)) = 0 for n >= 1, i.e., all nonzero terms must be in A048103.
a(10) is 240 decimal digits long (can be found in b-file), and a(11) is too big to fit even into a b-file as it is 32700 decimal digits long, but it can be found in the given a-file.

Crossrefs

Cf. A002110, A048103, A129251, A276085, A276086, A328317 (the smallest prime not dividing a(n)), A328318, A328319 (digit sum in primorial base), A328322 (max. digit), A328323.
Cf. A153013, and also A109162, A179016, A219666, A259934 for more or less analogous sequences.
Cf. also A328313.

Programs

Formula

a(0) = 0; and for n > 0, a(n) = A276086(a(n-1)).

A328317 Smallest prime not dividing A328316(n), with a(0) = 1 by convention; Equally, for n > 0, smallest prime dividing A328316(1+n).

Original entry on oeis.org

1, 2, 3, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2
Offset: 0

Views

Author

Antti Karttunen, Oct 14 2019

Keywords

Comments

a(2n+1) = 2 for all n >= 0. Does the pattern of 5's in the even bisection also continue?

Crossrefs

Programs

Formula

a(0) = 1; and for n > 0, a(n) = A053669(A328316(n)).
a(n) = A020639(A328316(1+n)).
For n >= 1, a(n) = A326810(A328316(n-1)). - Antti Karttunen, Nov 15 2019

Extensions

a(12)-a(13) from Jinyuan Wang, Jul 20 2020

A328322 Maximal digit value used when A328316(n) is written in primorial base; maximal prime exponent in A328316(1+n).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 3, 4, 7, 49, 430, 74814
Offset: 0

Views

Author

Antti Karttunen, Oct 14 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A328114(A328316(n)).
a(n) = A051903(A328316(1+n)).
Showing 1-4 of 4 results.