cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A356224 Number of divisors of n whose prime indices cover an initial interval of positive integers.

Original entry on oeis.org

1, 2, 1, 3, 1, 3, 1, 4, 1, 2, 1, 5, 1, 2, 1, 5, 1, 4, 1, 3, 1, 2, 1, 7, 1, 2, 1, 3, 1, 4, 1, 6, 1, 2, 1, 7, 1, 2, 1, 4, 1, 3, 1, 3, 1, 2, 1, 9, 1, 2, 1, 3, 1, 5, 1, 4, 1, 2, 1, 7, 1, 2, 1, 7, 1, 3, 1, 3, 1, 2, 1, 10, 1, 2, 1, 3, 1, 3, 1, 5, 1, 2, 1, 5, 1, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 04 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(n) gapless divisors of n = 1..24:
  1  2  1  4  1  6  1  8  1  2  1  12  1  2  1  16  1  18  1  4  1  2  1  24
     1     2     2     4     1     6      1     8      6      2     1     12
           1     1     2           4            4      2      1           8
                       1           2            2      1                  6
                                   1            1                         4
                                                                          2
                                                                          1
For example, the divisors of 12 are {1,2,3,4,6,12}, of which {1,2,4,6,12} belong to A055932, so a(12) = 5.
		

Crossrefs

These divisors belong to A055932, a subset of A073491 (complement A073492).
The complement is A356225.
A001223 lists the prime gaps.
A328338 has third-largest divisor prime.
A356226 gives the lengths of maximal gapless intervals of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    Table[Length[Select[Divisors[n],normQ[primeMS[#]]&]],{n,100}]

A356225 Number of divisors of n whose prime indices do not cover an initial interval of positive integers.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 0, 2, 2, 1, 1, 1, 2, 3, 0, 1, 2, 1, 3, 3, 2, 1, 1, 2, 2, 3, 3, 1, 4, 1, 0, 3, 2, 3, 2, 1, 2, 3, 4, 1, 5, 1, 3, 5, 2, 1, 1, 2, 4, 3, 3, 1, 3, 3, 4, 3, 2, 1, 5, 1, 2, 5, 0, 3, 5, 1, 3, 3, 6, 1, 2, 1, 2, 5, 3, 3, 5, 1, 5, 4, 2, 1, 7, 3, 2, 3
Offset: 1

Views

Author

Gus Wiseman, Aug 13 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(70) = 6 divisors: 5, 7, 10, 14, 35, 70.
		

Crossrefs

These divisors belong to the complement of A055932, a subset of A073491.
These divisors belong to A080259, a superset of A073492.
The complement is counted by A356224.
A001223 lists the prime gaps.
A328338 has third-largest divisor prime, smallest A119313.
A356226 gives the lengths of maximal gapless intervals of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    Table[Length[Select[Divisors[n],!normQ[primeMS[#]]&]],{n,100}]

Formula

a(n) = A000005(n) - A356224(n).

A119313 Numbers with a prime as third-smallest divisor.

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 21, 22, 24, 26, 30, 33, 34, 35, 36, 38, 39, 42, 45, 46, 48, 50, 51, 54, 55, 57, 58, 60, 62, 63, 65, 66, 69, 70, 72, 74, 75, 77, 78, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 96, 98, 102, 105, 106, 108, 110, 111, 114, 115, 118, 119, 120, 122, 123, 126
Offset: 1

Views

Author

Reinhard Zumkeller, May 15 2006

Keywords

Comments

m is a term iff A001221(m) > 1 and (A067029(m) = 1 or A119288(m) < A020639(m)^2).

Examples

			a(1) = A087134(3) = 6.
From _Gus Wiseman_, Oct 19 2019: (Start)
The sequence of terms together with their divisors begins:
    6: {1,2,3,6}
   10: {1,2,5,10}
   12: {1,2,3,4,6,12}
   14: {1,2,7,14}
   15: {1,3,5,15}
   18: {1,2,3,6,9,18}
   21: {1,3,7,21}
   22: {1,2,11,22}
   24: {1,2,3,4,6,8,12,24}
   26: {1,2,13,26}
   30: {1,2,3,5,6,10,15,30}
   33: {1,3,11,33}
   34: {1,2,17,34}
   35: {1,5,7,35}
   36: {1,2,3,4,6,9,12,18,36}
   38: {1,2,19,38}
   39: {1,3,13,39}
   42: {1,2,3,6,7,14,21,42}
   45: {1,3,5,9,15,45}
   46: {1,2,23,46}
(End)
		

Crossrefs

Complement of A119314.
Subsequences: A006881, A000469, A008588.
A subset of A002808 and A080257.
Numbers whose third-largest divisor is prime are A328338.
Second-smallest divisor is A020639.
Third-smallest divisor is A292269.

Programs

  • Maple
    q:= n-> (l-> nops(l)>2 and isprime(l[3]))(
             sort([numtheory[divisors](n)[]])):
    select(q, [$1..200])[];  # Alois P. Heinz, Oct 19 2019
  • Mathematica
    Select[Range[100],Length[Divisors[#]]>2&&PrimeQ[Divisors[#][[3]]]&] (* Gus Wiseman, Oct 15 2019 *)
    Select[Range[130], Length[f = FactorInteger[#]] > 1 && (f[[1, 2]] == 1 || f[[1, 1]]^2 > f[[2, 1]]) &] (* Amiram Eldar, Jul 02 2022 *)

Extensions

Name edited by Gus Wiseman, Oct 19 2019

A356069 Number of divisors of n whose prime indices cover an interval of positive integers (A073491).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 3, 2, 6, 2, 3, 4, 5, 2, 6, 2, 4, 3, 3, 2, 8, 3, 3, 4, 4, 2, 7, 2, 6, 3, 3, 4, 9, 2, 3, 3, 5, 2, 5, 2, 4, 6, 3, 2, 10, 3, 4, 3, 4, 2, 8, 3, 5, 3, 3, 2, 10, 2, 3, 4, 7, 3, 5, 2, 4, 3, 5, 2, 12, 2, 3, 6, 4, 4, 5, 2, 6, 5, 3, 2, 7, 3, 3
Offset: 1

Views

Author

Gus Wiseman, Aug 28 2022

Keywords

Comments

First differs from A000005 at 10, 14, 20, 21, 22, ... = A307516.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(n) counted divisors of n = 1, 2, 4, 6, 12, 16, 24, 30, 36, 48, 72, 90:
  1   2   4   6  12  16  24  30  36  48  72  90
      1   2   3   6   8  12  15  18  24  36  45
          1   2   4   4   8   6  12  16  24  30
              1   3   2   6   5   9  12  18  18
                  2   1   4   3   6   8  12  15
                  1       3   2   4   6   9   9
                          2   1   3   4   8   6
                          1       2   3   6   5
                                  1   2   4   3
                                      1   3   2
                                          2   1
                                          1
		

Crossrefs

These divisors belong to A073491, a superset of A055932, complement A073492.
The initial case is A356224.
The complement in the initial case is counted by A356225.
A000005 counts divisors.
A001223 lists the prime gaps.
A056239 adds up prime indices, row sums of A112798, lengths A001222.
A328338 has third-largest divisor prime.
A356226 gives the lengths of maximal gapless intervals of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    nogapQ[m_]:=m=={}||Union[m]==Range[Min[m],Max[m]];
    Table[Length[Select[Divisors[n],nogapQ[primeMS[#]]&]],{n,100}]
Showing 1-4 of 4 results.