A328348
Let S be any integer in the range 3 <= S <= 17. Sequence has the property that a(n)*S is the sum of all positive integers whose decimal expansion has <= n digits and contains at most two distinct nonzero digits p and q such that p+q=S.
Original entry on oeis.org
0, 1, 23, 467, 9355, 187131, 3742683, 74853787, 1497075995, 29941520411, 598830409243, 11976608186907, 239532163742235, 4790643274852891, 95812865497074203, 1916257309941516827, 38325146198830402075, 766502923976608172571, 15330058479532163713563, 306601169590643274795547
Offset: 0
For n=3, the sum of all positive integers whose decimal expansion contains only the digits 5 and 8 (then S=5+8=13) with at most n=3 such digits, i.e., the sum 5 + 8 + 55 + 58 + 85 + 88 + 555 + 558 + 585 + 588 + 855 + 858 + 885 + 888, is equal to a(3)*13=6071.
The formula is valid for any other choice of two distinct digits. Other examples: always with n=3 but let's say with the 2 and 3 digits (then S=2+3=5), the sum 2+3+22+23+32+33+222+223+232+233+322+323+332+333 is equal to a(3)*5=2335.
Or with the 6 and 7 digits (and which case S=6+7 is the same as with the 5 and 8 digits), the sum 6+7+66+67+...+776+777 is equal to a(3)*13=6071 (same sum as with the 5 and 8 digits).
A328350
Let S be any integer in the range 6 <= S <= 24. Sequence has the property that a(n)*S is the sum of all positive integers whose decimal expansion has <= n digits and contains at most three distinct nonzero digits d1, d2, d3 such that d1+d2+d3 = S.
Original entry on oeis.org
0, 1, 34, 1033, 31030, 931021, 27930994, 837930913, 25137930670, 754137929941, 22624137927754, 678724137921193, 20361724137901510, 610851724137842461, 18325551724137665314, 549766551724137133873, 16492996551724135539550, 494789896551724130756581, 14843696896551724116407674, 445310906896551724073360953
Offset: 0
For n=2, the sum of all positive integers whose decimal expansions consist of at most n=2 of the digits 5, 6 or 7, i.e., the sum 5+6+7+55+56+57+65+66+67+75+76+77, is equal to a(2)*(5+6+7) = 612.
The formula is valid for any other choice of three distinct digits. Another example: again with n=2, but let's say with the digits 1, 2 and 3, the sum 1+2+3+11+12+13+21+22+23+31+32+33 is equal to a(2)*(1+2+3) = 204.
-
Array[(20*30^# - 29*3^# + 9)/522 &, 20, 0] (* or *)
LinearRecurrence[{34, -123, 90}, {0, 1, 34}, 20] (* Paolo Xausa, Apr 29 2024 *)
-
[(20*30**n-29*3**n+9)//522 for n in range(20)]
A328351
Let S be any integer in the range 10 <= S <= 30. Sequence has the property that a(n)*S is the sum of all positive integers whose decimal expansion has <= n digits and contains at most four distinct nonzero digits d1, d2, d3 and d4 such that d1+d2+d3+d4=S.
Original entry on oeis.org
0, 1, 45, 1821, 72925, 2917341, 116695005, 4667805661, 186712248285, 7468490018781, 298739601100765, 11949584045428701, 477983361822740445, 19119334472931987421, 764773378917368975325, 30590935156695116926941, 1223637406267806108733405, 48945496250712250075959261
Offset: 0
For n=2, the sum of all positive integers whose decimal notation is only made of the 4,5,6 or 7 digit with at most n=2 such digits, i.e., the sum 4+5+6+7+44+45+46+47+54+55+56+57+64+65+66+67+74+75+76+77, is equal to (4+5+6+7)*a(2)=990.
The formula is valid for any other quadruple, as soon as the four digits are different from each other. Another example: always with n=2 but let's say with the 1,2,3 and 4 digits, the sum 1+2+3+4+11+12+13+14+21+22+23+24+31+32+33+34+41+42+43+44 is equal to a(2)*(1+2+3+4) = 450.
-
CoefficientList[Series[x/(1 - 45 x + 204 x^2 - 160 x^3), {x, 0, 17}], x] (* Michael De Vlieger, Dec 23 2019 *)
-
[(30*40**n-39*4**n+9)//1053 for n in range(20)]
A328352
Similar to A328350, but for 5 digits rather then 3.
Original entry on oeis.org
0, 1, 56, 2831, 141706, 7086081, 354307956, 17715417331, 885770964206, 44288548698581, 2214427437370456, 110721371880729831, 5536068594097526706, 276803429705181511081, 13840171485260601432956, 692008574263037701042331, 34600428713151923199089206, 1730021435657596350689323581
Offset: 0
For n=2, the sum of all positive integers whose decimal notation is only made of the 3,4,5,6 and 7 digit with at most n=2 such digits, i.e. the sum 3+4+5+6+7+33+34+35+36+37+43+44+45+46+47+53+54+55+56+57+63+64+65+66+67+73+74+75+76+77 is equal to a(2)*(3+4+5+6+7) = 56*25 = 1400.
The formula is valid for any other 5-tuple of digits, as soon as the 5 digits are different from each other. Always with n=2 but let's say with the 5,6,7,8 and 9 digits, the sum 5+6+7+8+9+55+56+57+58+59+65+66+67+68+69+75+76+77+78+79+85+86+87+88+89+95+96+97+98+99 is equal to a(2)*(5+6+7+8+9) = 56*35 = 1960.
A328353
a(n)*S is the sum of all positive integers whose decimal expansion is up to n digits and uses six distinct nonzero digits d1,d2,d3,d4,d5,d6 such that d1+d2+d3+d4+d5+d6=S.
Original entry on oeis.org
0, 1, 67, 4063, 244039, 14643895, 878643031, 52718637847, 3163118606743, 189787118420119, 11387227117300375, 683233627110581911, 40994017627070271127, 2459641057626828406423, 147578463457625377218199, 8854707807457616670088855, 531282468447457564427312791, 31876948106847457250970656407
Offset: 0
For n=2, the sum of all positive integers whose decimal notation is only made of, let's say, the 4,5,6,7,8,9 digits with at most n=2 such digits, i.e. the sum 4+5+6+7+8+9+44+45+46+47+48+49+54+55+56+57+58+59+64+65+66+67+68+69+74+75+76+77+78+79+84+85+86+87+88+89+94+95+96+97+98+99 is equal to a(2)*(4+5+6+7+8+9) = 67*39 = 2613.
-
LinearRecurrence[{67,-426,360},{0,1,67},20] (* Harvey P. Dale, Feb 11 2022 *)
-
[(50*60**n-59*6**n+9)//2655 for n in range(20)]
A328355
Let S be any integer in the range 36 <= S <= 44. Sequence has the property that a(n)*S is the sum of all positive integers whose decimal expansion has <= n digits and uses eight distinct nonzero digits d1,d2,d3,d4,d5,d6,d7,d8 such that d1+d2+d3+d4+d5+d6+d7+d8=S.
Original entry on oeis.org
0, 1, 89, 7193, 576025, 46086681, 3686971929, 294958053913, 23596646709785, 1887731755956761, 151018540629932569, 12081483251621739033, 966518660139556190745, 77321492811243031804441, 6185719424900070836714009, 494857553992010693275990553, 39588604319360895672790202905
Offset: 0
For n=2, the sum of all positive integers whose decimal notation is made of any digit different from 0 and, let's say, 9 with at most n=2 such digits, i.e., the sum 1+2+3+4+5+6+7+8+11+12+13+14+15+16+17+18+21+...+28+31+...+38+41+...+48+51+...+58+61+...+68+71+...+78+81+...+88, is equal to a(2)*(1+2+3+4+5+6+7+8) = 89*36 = 3204.
Similarly, and always with n=2, the sum of all positive integers whose decimal notation is made of any digit different from 0 and, let's say, 8, i.e., the sum 1+2+3+4+5+6+7+9+11+..+17+19+21+...+27+29+31+...+37+39+41+...+47+49+51+...+57+59+61+...+67+69+71+...+77+79+91+...+97+99 is equal to a(2)*(1+2+3+4+5+6+7+9) = 89*37 = 3293.
-
CoefficientList[Series[x/(1 - 89 x + 728 x^2 - 640 x^3), {x, 0, 16}], x] (* Michael De Vlieger, Dec 10 2019 *)
-
[(70*80**n-79*8**n+9)//4977 for n in range(20)]
A328356
a(n) is the sum of all positive integers whose decimal expansion is up to n digits and does not contain the 0 digit.
Original entry on oeis.org
0, 45, 4500, 409095, 36855450, 3317322645, 298562027400, 26870609370195, 2418355085455350, 217651959870221745, 19588676407933119300, 1762980876890499197295, 158668278921733593899250, 14280145102970321446216845, 1285213059267457612117075200
Offset: 0
For n=2, the sum of all integers from 1 to 99 except those containing a zero (i.e., except multiples of 10: 10, 20, ..., 90) is equal to a(2) = 4500.
For n=3, the sum of all integers from 1 to 999 except those containing a zero is equal to a(3) = 409095.
-
concat(0, Vec(45*x / ((1 - x)*(1 - 9*x)*(1 - 90*x)) + O(x^15))) \\ Colin Barker, Dec 10 2019
-
[(80*90**n-89*9**n+9)*5//712 for n in range(20)]
Showing 1-7 of 7 results.
Comments