A328441 Number of inversion sequences of length n avoiding the consecutive pattern 100.
1, 1, 2, 6, 23, 109, 618, 4098, 31173, 267809, 2565520, 27120007, 313616532, 3938508241, 53381045786, 776672993274, 12074274033482, 199746500391688, 3503656507826887, 64951437702821877, 1268898555348831913, 26055882443142671038, 561050228044941209930, 12641053014560238560492, 297439800300471548183778
Offset: 0
Keywords
Examples
Note that a(4)=23. Indeed, of the 24 inversion sequences of length 4, the only one that does not avoid the consecutive pattern 100 is 0100. Similarly, 0110 is the only inversion sequence of length 4 that does not avoid the consecutive pattern 110.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..448
- Juan S. Auli, Pattern Avoidance in Inversion Sequences, Ph. D. thesis, Dartmouth College, ProQuest Dissertations Publishing (2020), 27964164.
- Juan S. Auli and Sergi Elizalde, Consecutive Patterns in Inversion Sequences, arXiv:1904.02694 [math.CO], 2019.
- Juan S. Auli and Sergi Elizalde, Consecutive patterns in inversion sequences II: avoiding patterns of relations, arXiv:1906.07365 [math.CO], 2019.
- Juan S. Auli and Sergi Elizalde, Wilf equivalences between vincular patterns in inversion sequences, arXiv:2003.11533 [math.CO], 2020.
Crossrefs
Programs
-
Maple
# after Alois P. Heinz in A328357 b := proc(n, x, t) local i; option remember; `if`(n = 0, 1, add(`if`(t and x < i, 0, b(n - 1, i, i = x)), i = 0 .. n - 1)); end proc; a := n -> b(n, -1, false); seq(a(n), n = 0 .. 24);
-
Mathematica
i100[1] = 1; i100[2] = 2; i100[n_] := i100[n] = Sum[s100[n, k], {k, 0, n - 1}]; s100[n_, k_] := s100[n, k] = i100[n - 1] - Sum[s100[n - 2, j], {j, k + 1, n - 3}]; Flatten[{1, Table[i100[m], {m, 1, 25}]}] (* Vaclav Kotesovec, Oct 18 2019 *)
Formula
a(n) ~ n! * c / sqrt(n), where c = 2.428754692682297906864850201408427747198... - Vaclav Kotesovec, Oct 18 2019
Comments