cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328441 Number of inversion sequences of length n avoiding the consecutive pattern 100.

Original entry on oeis.org

1, 1, 2, 6, 23, 109, 618, 4098, 31173, 267809, 2565520, 27120007, 313616532, 3938508241, 53381045786, 776672993274, 12074274033482, 199746500391688, 3503656507826887, 64951437702821877, 1268898555348831913, 26055882443142671038, 561050228044941209930, 12641053014560238560492, 297439800300471548183778
Offset: 0

Views

Author

Juan S. Auli, Oct 17 2019

Keywords

Comments

A length n inversion sequence e_1, e_2, ..., e_n is a sequence of integers such that 0 <= e_i < i. The term a(n) counts the inversion sequences of length n with no entries e_i, e_{i+1}, e_{i+2} such that e_i > e_{i+1} = e_{i+2}. That is, a(n) counts the inversion sequences of length n avoiding the consecutive pattern 100.
The term a(n) also counts the inversion sequences of length n with no entries e_i, e_{i+1}, e_{i+2} such that e_i = e_{i+1} > e_{i+2}. That is, a(n) also counts the inversion sequences of length n avoiding the consecutive pattern 110, see the Auli and Elizalde links.

Examples

			Note that a(4)=23. Indeed, of the 24 inversion sequences of length 4, the only one that does not avoid the consecutive pattern 100 is 0100.
Similarly, 0110 is the only inversion sequence of length 4 that does not avoid the consecutive pattern 110.
		

Crossrefs

Programs

  • Maple
    # after Alois P. Heinz in A328357
    b := proc(n, x, t) local i; option remember; `if`(n = 0, 1, add(`if`(t and x < i, 0, b(n - 1, i, i = x)), i = 0 .. n - 1)); end proc;
    a := n -> b(n, -1, false);
    seq(a(n), n = 0 .. 24);
  • Mathematica
    i100[1] = 1; i100[2] = 2; i100[n_] := i100[n] = Sum[s100[n, k], {k, 0, n - 1}]; s100[n_, k_] := s100[n, k] = i100[n - 1] - Sum[s100[n - 2, j], {j, k + 1, n - 3}]; Flatten[{1, Table[i100[m], {m, 1, 25}]}] (* Vaclav Kotesovec, Oct 18 2019 *)

Formula

a(n) ~ n! * c / sqrt(n), where c = 2.428754692682297906864850201408427747198... - Vaclav Kotesovec, Oct 18 2019