cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A328479 a(n) = n/A328478(n), where A328478(n) is obtained by repeatedly dividing n by the largest primorial that divides it until a fixed point is reached.

Original entry on oeis.org

1, 2, 1, 4, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 16, 1, 6, 1, 4, 1, 2, 1, 24, 1, 2, 1, 4, 1, 30, 1, 32, 1, 2, 1, 36, 1, 2, 1, 8, 1, 6, 1, 4, 1, 2, 1, 48, 1, 2, 1, 4, 1, 6, 1, 8, 1, 2, 1, 60, 1, 2, 1, 64, 1, 6, 1, 4, 1, 2, 1, 72, 1, 2, 1, 4, 1, 6, 1, 16, 1, 2, 1, 12, 1, 2, 1, 8, 1, 30, 1, 4, 1, 2, 1, 96, 1, 2, 1, 4, 1, 6, 1, 8, 1
Offset: 1

Views

Author

Antti Karttunen, Oct 19 2019

Keywords

Comments

a(n) is the largest term in A025487 that divides n evenly. - Hal M. Switkay, May 04 2021

Crossrefs

Programs

Formula

a(n) = n / A328478(n).

A358218 Number of prime factors (with multiplicity) in A328478(n).

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 0, 2, 1, 1, 0, 1, 1, 2, 0, 1, 1, 1, 1, 2, 1, 1, 0, 2, 1, 3, 1, 1, 0, 1, 0, 2, 1, 2, 0, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 0, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 0, 1, 1, 3, 0, 2, 1, 1, 1, 2, 2, 1, 0, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 0, 1, 2, 3, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 3, 1, 2, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 04 2022

Keywords

Crossrefs

Cf. A001222, A025487 (positions of zeros), A328478, A355930.
Cf. A358219 (positions where differs from A358217).

Programs

Formula

a(n) = A001222(A328478(n)).
a(n) <= A355930(n).
Apparently, a(n) >= A358217(n) for all n.

A330752 Number of values of k, 1 <= k <= n, with A328478(k) = A328478(n), where A328478(n) gives the remainder when all maximal primorial divisors of n (from the largest to smallest) have been divided out.

Original entry on oeis.org

1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 1, 6, 1, 2, 1, 7, 1, 2, 1, 3, 1, 2, 1, 8, 1, 2, 1, 3, 1, 9, 1, 10, 1, 2, 1, 11, 1, 2, 1, 4, 1, 4, 1, 3, 1, 2, 1, 12, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 13, 1, 2, 1, 14, 1, 4, 1, 3, 1, 2, 1, 15, 1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 1, 6, 1, 2, 1, 5, 1, 3, 1, 3, 1, 2, 1, 16, 1, 2, 1, 3, 1, 4, 1, 5, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 30 2019

Keywords

Comments

Ordinal transform of A328478.

Crossrefs

Programs

  • Mathematica
    A111701[n_] := A111701[n] = Block[{m = n, k = 1}, While[IntegerQ[m/Prime[k]], m = m/Prime[k]; k++]; m];
    A328478[n_] := A328478[n] = If[A111701[n] == n, n, A328478[A111701[n]]];
    Module[{b}, b[_] = 0;
    a[n_] := With[{t = A328478[n]}, b[t] = b[t] + 1]];
    Array[a, 105] (* Jean-François Alcover, Jan 11 2022, after Robert G. Wilson v in A111701 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A111701(n) = forprime(p=2, , if(n%p, return(n), n /= p));
    A328478(n) = { my(u=A111701(n)); if(u==n, return(n), return(A328478(u))); };
    v330752 = ordinal_transform(vector(up_to, n, A328478(n)));
    A330752(n) = v330752[n];

A329900 Primorial deflation of n: starting from x = n, repeatedly divide x by the largest primorial A002110(k) that divides it, until x is an odd number. Then a(n) = Product prime(k_i), for primorial indices k_1 >= k_2 >= ..., encountered in the process.

Original entry on oeis.org

1, 2, 1, 4, 1, 3, 1, 8, 1, 2, 1, 6, 1, 2, 1, 16, 1, 3, 1, 4, 1, 2, 1, 12, 1, 2, 1, 4, 1, 5, 1, 32, 1, 2, 1, 9, 1, 2, 1, 8, 1, 3, 1, 4, 1, 2, 1, 24, 1, 2, 1, 4, 1, 3, 1, 8, 1, 2, 1, 10, 1, 2, 1, 64, 1, 3, 1, 4, 1, 2, 1, 18, 1, 2, 1, 4, 1, 3, 1, 16, 1, 2, 1, 6, 1, 2, 1, 8, 1, 5, 1, 4, 1, 2, 1, 48, 1, 2, 1, 4, 1, 3, 1, 8, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 22 2019

Keywords

Comments

When applied to arbitrary n, the "primorial deflation" (term coined by Matthew Vandermast in A181815) induces the splitting of n to two factors A328478(n)*A328479(n) = n, where we call A328478(n) the non-deflatable component of n (which is essentially discarded), while A328479(n) is the deflatable component. Only if n is in A025487, then the entire n is deflatable, i.e., A328478(n) = 1 and A328479(n) = n.
According to Daniel Suteu, also the ratio (A319626(n) / A319627(n)) can be viewed as a "primorial deflation". That definition coincides with this one when restricted to terms of A025487, as for all k in A025487, A319626(k) = a(k), and A319627(k) = 1. - Antti Karttunen, Dec 29 2019

Crossrefs

Programs

  • Mathematica
    Array[If[OddQ@ #, 1, Times @@ Prime@ # &@ Rest@ NestWhile[Append[#1, {#3, Drop[#, -LengthWhile[Reverse@ #, # == 0 &]] &[#2 - PadRight[ConstantArray[1, #3], Length@ #2]]}] & @@ {#1, #2, LengthWhile[#2, # > 0 &]} & @@ {#, #[[-1, -1]]} &, {{0, TakeWhile[If[# == 1, {0}, Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ #], # > 0 &]}}, And[FreeQ[#[[-1, -1]], 0], Length[#[[-1, -1]] ] != 0] &][[All, 1]] ] &, 105] (* Michael De Vlieger, Dec 28 2019 *)
    Array[Times @@ Prime@(TakeWhile[Reap[FixedPointList[Block[{k = 1}, While[Mod[#, Prime@ k] == 0, k++]; Sow[k - 1]; #/Product[Prime@ i, {i, k - 1}]] &, #]][[-1, 1]], # > 0 &]) &, 105] (* Michael De Vlieger, Jan 11 2020 *)
  • PARI
    A329900(n) = { my(m=1, pp=1); while(1, forprime(p=2, ,if(n%p, if(2==p, return(m), break), n /= p; pp = p)); m *= pp); (m); };
    
  • PARI
    A111701(n) = forprime(p=2, , if(n%p, return(n), n /= p));
    A276084(n) = { for(i=1,oo,if(n%prime(i),return(i-1))); }
    A329900(n) = if(n%2,1,prime(A276084(n))*A329900(A111701(n)));

Formula

For odd n, a(n) = 1, for even n, a(n) = A000040(A276084(n)) * a(A111701(n)).
For even n, a(n) = A000040(A276084(n)) * a(n/A002110(A276084(n))).
A108951(a(n)) = A328479(n), for n >= 1.
a(A108951(n)) = n, for n >= 1.
a(A328479(n)) = a(n), for n >= 1.
a(A328478(n)) = 1, for n >= 1.
a(A002110(n)) = A000040(n), for n >= 1.
a(A000142(n)) = A307035(n), for n >= 0.
a(A283477(n)) = A019565(n), for n >= 0.
a(A329886(n)) = A005940(1+n), for n >= 0.
a(A329887(n)) = A163511(n), for n >= 0.
a(A329602(n)) = A329888(n), for n >= 1.
a(A025487(n)) = A181815(n), for n >= 1.
a(A124859(n)) = A181819(n), for n >= 1.
a(A181817(n)) = A025487(n), for n >= 1.
a(A181821(n)) = A122111(n), for n >= 1.
a(A002182(n)) = A329902(n), for n >= 1.
a(A260633(n)) = A329889(n), for n >= 1.
a(A033833(n)) = A330685(n), for n >= 1.
a(A307866(1+n)) = A330686(n), for n >= 1.
a(A330687(n)) = A330689(n), for n >= 1.

A093411 Divide n by the largest factorial that divides it and repeat until an odd number is reached, which will be the result; a(0) = 0.

Original entry on oeis.org

0, 1, 1, 3, 1, 5, 1, 7, 1, 9, 5, 11, 1, 13, 7, 15, 1, 17, 3, 19, 5, 21, 11, 23, 1, 25, 13, 27, 7, 29, 5, 31, 1, 33, 17, 35, 1, 37, 19, 39, 5, 41, 7, 43, 11, 45, 23, 47, 1, 49, 25, 51, 13, 53, 9, 55, 7, 57, 29, 59, 5, 61, 31, 63, 1, 65, 11, 67, 17, 69, 35, 71, 3, 73, 37, 75, 19, 77, 13, 79
Offset: 0

Views

Author

Amarnath Murthy, Mar 30 2004

Keywords

Comments

a(n) is odd for all positive n>0; a(n) = n iff n is odd.

Examples

			a(18) = 3, 18/6 = 3. though 18/2 = 9.
		

Crossrefs

For bisection see A109375, for positions of ones, A344181.
Cf. also A328478.

Programs

Formula

From Antti Karttunen, May 18 2021: (Start)
a(0) = 0, a(2n+1) = 2n+1, a(2n) = a(A076934(2n)).
a(n) = n / A329379(n).
(End)

Extensions

Edited, corrected and extended by Robert G. Wilson v, Aug 25 2005
Definition further clarified by Antti Karttunen, May 18 2021

A355930 Sum of the prime indices of n minus the sum of the prime indices of the smallest number with same prime signature as n, when the sum is taken with multiplicity, as in A056239.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 3, 0, 2, 1, 4, 0, 5, 2, 2, 0, 6, 1, 7, 1, 3, 3, 8, 0, 4, 4, 3, 2, 9, 0, 10, 0, 4, 5, 4, 0, 11, 6, 5, 1, 12, 1, 13, 3, 3, 7, 14, 0, 6, 3, 6, 4, 15, 2, 5, 2, 7, 8, 16, 0, 17, 9, 4, 0, 6, 2, 18, 5, 8, 2, 19, 0, 20, 10, 4, 6, 6, 3, 21, 1, 4, 11, 22, 1, 7, 12, 9, 3, 23, 1, 7, 7, 10, 13, 8, 0, 24, 5, 5, 2, 25, 4, 26, 4, 3
Offset: 1

Views

Author

Antti Karttunen as suggested by Don Reble, Oct 25 2022

Keywords

Comments

a(n) gives the signature excitation of n (a concept proposed by Allan C. Wechsler, indicating the distance of n from the terms of A025487), when the primes in the "excited state", i.e., those present in A328478(n), are de-excited one by one, and the prime signature of n is preserved. See the example.

Examples

			For n = 98 = 2*7*7, the other 7 is de-excited as 7 -> 5 -> 3 -> 2, and the other 7 is de-excited as 7 -> 5 -> 3, to get 2*2*3 = 12 = A046523(98). There are 3+2 de-excitations in total, therefore a(98) = 5.
		

Crossrefs

Cf. A025487 (positions of zeros), A046523, A056239.
Cf. also A319627, A328478, A358218.
Differs from A325799 for the first time at n=18, where a(18) = 1, while A325799(18) = 0.

Programs

  • Mathematica
    {0}~Join~Array[Total@ Flatten[ConstantArray[PrimePi[#1], #2] & @@@ #] - Total@ Flatten@ MapIndexed[ConstantArray[First[#2], #1] &, ReverseSort[#[[All, -1]]]] &@ FactorInteger[#] &, 104, 2] (* Michael De Vlieger, Nov 02 2022 *)
  • PARI
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1]))); }
    A355930(n) = (A056239(n) - A056239(A046523(n)));

Formula

a(n) = A056239(n) - A356159(n) = A056239(n) - A056239(A046523(n)).
For all n, a(n) >= A358218(n). - Antti Karttunen, Nov 05 2022

A358219 Indices k where A358217(k) != A358218(k).

Original entry on oeis.org

15, 35, 45, 70, 75, 77, 105, 135, 140, 143, 154, 165, 175, 195, 221, 225, 231, 245, 255, 280, 285, 286, 308, 315, 323, 345, 350, 375, 385, 405, 429, 435, 437, 442, 450, 455, 462, 465, 490, 495, 525, 539, 555, 560, 572, 585, 595, 615, 616, 645, 646, 663, 665, 667, 675, 693, 700, 705, 715, 735, 765, 770, 795, 805
Offset: 1

Views

Author

Antti Karttunen, Nov 04 2022

Keywords

Crossrefs

Showing 1-7 of 7 results.