cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328485 Dirichlet g.f.: zeta(s)^2 * zeta(s-1) / zeta(2*s-1).

Original entry on oeis.org

1, 4, 5, 9, 7, 20, 9, 18, 15, 28, 13, 45, 15, 36, 35, 35, 19, 60, 21, 63, 45, 52, 25, 90, 33, 60, 43, 81, 31, 140, 33, 68, 65, 76, 63, 135, 39, 84, 75, 126, 43, 180, 45, 117, 105, 100, 49, 175, 59, 132, 95, 135, 55, 172, 91, 162, 105, 124, 61, 315, 63, 132, 135, 133, 105
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 16 2019

Keywords

Comments

Inverse Moebius transform of A034448.
Dirichlet convolution of A055615 with A064840.

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> add(mobius(d)*tau(n/d)*sigma(n/d)*d, d=divisors(n)):
    seq(a(n), n=1..70);  # Alois P. Heinz, Oct 16 2019
  • Mathematica
    Table[n DivisorSum[n, MoebiusMu[n/#] DivisorSigma[0, #] DivisorSigma[1, #]/# &], {n, 1, 65}]
    nmax = 65; CoefficientList[Series[Sum[DivisorSum[k, # &, CoprimeQ[#, k/#] &] x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    f[p_, e_] := (p^(e + 1) - p)/(p - 1) + e + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 10 2023 *)
  • PARI
    a(n) = {my(f = factor(n), p = f[, 1], e = f[, 2]); prod(i = 1, #p, (p[i]^(e[i] + 1) - p[i])/(p[i] - 1) + e[i] + 1);} \\ Amiram Eldar, Feb 10 2023

Formula

G.f.: Sum_{k>=1} usigma(k) * x^k / (1 - x^k), where usigma = A034448.
a(n) = Sum_{d|n} usigma(d).
a(n) = n * Sum_{d|n} mu(n/d) * tau(d) * sigma(d) / d, where mu = A008683, tau = A000005 and sigma = A000203.
Sum_{k=1..n} a(k) ~ Pi^4 * n^2 / (72 * zeta(3)). - Vaclav Kotesovec, Oct 17 2019
From Amiram Eldar, Feb 10 2023: (Start)
a(n) = Sum_{d|n} Sum_{d'|n, gcd(d, d')=1} d'.
Multiplicative with a(p^e) = (p^(e+1)-p)/(p-1) + e + 1. (End)