cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A328487 Dirichlet g.f.: zeta(s)^2 * zeta(s-1)^2 * (1 - 2^(1 - s))^2.

Original entry on oeis.org

1, 2, 8, 3, 12, 16, 16, 4, 42, 24, 24, 24, 28, 32, 96, 5, 36, 84, 40, 36, 128, 48, 48, 32, 98, 56, 184, 48, 60, 192, 64, 6, 192, 72, 192, 126, 76, 80, 224, 48, 84, 256, 88, 72, 504, 96, 96, 40, 178, 196, 288, 84, 108, 368, 288, 64, 320, 120, 120, 288, 124, 128, 672, 7, 336
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 16 2019

Keywords

Comments

Dirichlet convolution of A000593 with itself.

Crossrefs

Programs

  • Mathematica
    nmax = 65; A000593 = Table[DivisorSum[n, Mod[#, 2] # &], {n, 1, nmax}]; Table[DivisorSum[n, A000593[[#]] A000593[[n/#]] &], {n, 1, nmax}]
    f[p_, e_] := ((e+1)*p^(e+3) - (e+3)*(p^(e+2) - p + 1) + 2)/(p-1)^3; f[2, e_] := e+1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 15 2023 *)

Formula

a(n) = Sum_{d|n} A000593(d) * A000593(n/d).
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 * (Pi^2 * (log(n)/2 + log(2) + gamma - 1/4) + 6*zeta'(2)) / 144, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 17 2019
Multiplicative with a(2^e) = e+1, and a(p^e) = ((e+1)*p^(e+3) - (e+3)*(p^(e+2) - p + 1) + 2)/(p-1)^3 for an odd prime p. - Amiram Eldar, Sep 15 2023
Showing 1-1 of 1 results.