cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A328486 Dirichlet g.f.: zeta(s)^4 * (1 - 2^(-s))^2.

Original entry on oeis.org

1, 2, 4, 3, 4, 8, 4, 4, 10, 8, 4, 12, 4, 8, 16, 5, 4, 20, 4, 12, 16, 8, 4, 16, 10, 8, 20, 12, 4, 32, 4, 6, 16, 8, 16, 30, 4, 8, 16, 16, 4, 32, 4, 12, 40, 8, 4, 20, 10, 20, 16, 12, 4, 40, 16, 16, 16, 8, 4, 48, 4, 8, 40, 7, 16, 32, 4, 12, 16, 32, 4, 40, 4, 8, 40, 12, 16, 32, 4, 20
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 16 2019

Keywords

Comments

Dirichlet convolution of A001227 with itself.

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; tau(2*n)-tau(n) end:
    a:= n-> add(b(d)*b(n/d), d=divisors(n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Oct 16 2019
  • Mathematica
    nmax = 80; A001227 = Table[DivisorSum[n, Mod[#, 2] &], {n, 1, nmax}]; Table[DivisorSum[n, A001227[[#]] A001227[[n/#]] &], {n, 1, nmax}]
    f[2, e_] := e + 1; f[p_, e_] := (e + 1)*(e + 2)*(e + 3)/6; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Nov 30 2020 *)

Formula

a(n) = Sum_{d|n} A001227(d) * A001227(n/d).
Sum_{k=1..n} a(k) ~ n * (log(n)^3/24 + (g/2 + log(2)/4 - 1/8)* log(n)^2 + (1/4 - g + 3*g^2/2 - log(2)/2 + 2*g*log(2) - sg1)* log(n) - 1/4 + (1 - 2*log(2))*g + (3*log(2) - 3/2)*g^2 + g^3 + log(2)/2 - log(2)^3/6 + (1 - 3*g - 2*log(2))* sg1 + sg2/2), where g is the Euler-Mascheroni constant A001620 and sg1, sg2 are the Stieltjes constants, see A082633 and A086279. - Vaclav Kotesovec, Oct 17 2019
Multiplicative with a(2^e) = e + 1, and a(p^e) = (e + 1)*(e + 2)*(e + 3)/6 for odd primes p. - Amiram Eldar, Nov 30 2020
Showing 1-1 of 1 results.