A328524 T(n,k) is the k-th smallest least integer of prime signatures for partitions of n into distinct parts; triangle T(n,k), n>=0, 1<=k<=A000009(n), read by rows.
1, 2, 4, 8, 12, 16, 24, 32, 48, 72, 64, 96, 144, 360, 128, 192, 288, 432, 720, 256, 384, 576, 864, 1440, 2160, 512, 768, 1152, 1728, 2592, 2880, 4320, 10800, 1024, 1536, 2304, 3456, 5184, 5760, 8640, 12960, 21600, 75600, 2048, 3072, 4608, 6912, 10368, 11520
Offset: 0
Examples
Triangle T(n,k) begins: 1; 2; 4; 8, 12; 16, 24; 32, 48, 72; 64, 96, 144, 360; 128, 192, 288, 432, 720; 256, 384, 576, 864, 1440, 2160; 512, 768, 1152, 1728, 2592, 2880, 4320, 10800; 1024, 1536, 2304, 3456, 5184, 5760, 8640, 12960, 21600, 75600; ...
Links
- Alois P. Heinz, Rows n = 0..50, flattened
- Eric Weisstein's World of Mathematics, Prime Signature
- Wikipedia, Partition (number theory)
- Wikipedia, Prime signature
- Index entries for sequences related to prime signature
Crossrefs
Programs
-
Maple
b:= proc(n, i, j) option remember; `if`(i*(i+1)/2
x*ithprime(j)^i, b(n-i, min(n-i, i-1), j+1))[], b(n, i-1, j)[]])) end: T:= n-> sort(b(n$2, 1))[]: seq(T(n), n=0..12); -
Mathematica
b[n_, i_, j_] := b[n, i, j] = If[i(i+1)/2 < n, {}, If[n == 0, {1}, Join[# * Prime[j]^i& /@ b[n - i, Min[n - i, i - 1], j + 1], b[n, i - 1, j]]]]; T[n_] := Sort[b[n, n, 1]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 07 2020, after Maple *)