cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328524 T(n,k) is the k-th smallest least integer of prime signatures for partitions of n into distinct parts; triangle T(n,k), n>=0, 1<=k<=A000009(n), read by rows.

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 32, 48, 72, 64, 96, 144, 360, 128, 192, 288, 432, 720, 256, 384, 576, 864, 1440, 2160, 512, 768, 1152, 1728, 2592, 2880, 4320, 10800, 1024, 1536, 2304, 3456, 5184, 5760, 8640, 12960, 21600, 75600, 2048, 3072, 4608, 6912, 10368, 11520
Offset: 0

Views

Author

Alois P. Heinz, Feb 18 2020

Keywords

Examples

			Triangle T(n,k) begins:
     1;
     2;
     4;
     8,   12;
    16,   24;
    32,   48,   72;
    64,   96,  144,  360;
   128,  192,  288,  432,  720;
   256,  384,  576,  864, 1440, 2160;
   512,  768, 1152, 1728, 2592, 2880, 4320, 10800;
  1024, 1536, 2304, 3456, 5184, 5760, 8640, 12960, 21600, 75600;
  ...
		

Crossrefs

Column k=1-3 give: A000079, A003945 for n>2, A116453 for n>4.
Row sums give A332626.
Last elements of rows give A332644.
Cf. A000009, A087443 (for all partitions), A087980 (as sorted sequence).

Programs

  • Maple
    b:= proc(n, i, j) option remember; `if`(i*(i+1)/2 x*ithprime(j)^i,
           b(n-i, min(n-i, i-1), j+1))[], b(n, i-1, j)[]]))
        end:
    T:= n-> sort(b(n$2, 1))[]:
    seq(T(n), n=0..12);
  • Mathematica
    b[n_, i_, j_] := b[n, i, j] = If[i(i+1)/2 < n, {}, If[n == 0, {1}, Join[# * Prime[j]^i& /@ b[n - i, Min[n - i, i - 1], j + 1], b[n, i - 1, j]]]];
    T[n_] := Sort[b[n, n, 1]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 07 2020, after Maple *)