A087980
Numbers with strictly decreasing prime exponents.
Original entry on oeis.org
1, 2, 4, 8, 12, 16, 24, 32, 48, 64, 72, 96, 128, 144, 192, 256, 288, 360, 384, 432, 512, 576, 720, 768, 864, 1024, 1152, 1440, 1536, 1728, 2048, 2160, 2304, 2592, 2880, 3072, 3456, 4096, 4320, 4608, 5184, 5760, 6144, 6912, 8192, 8640, 9216, 10368, 10800
Offset: 1
The sequence starts with a(1)=1, a(2)=2, a(3)=4 and a(4)=8. The next term is a(5)=12 = 2^2*3^1 = p_1^k_1 * p_2^k_2 with k_1=2 > k_2=1.
The weak (weakly decreasing) version is
A025487.
The weak opposite (weakly increasing) version is
A133808.
The opposite (strictly increasing) version is
A133809.
For strictly decreasing prime signature we have
A304686.
-
import Data.List (isPrefixOf)
a087980 n = a087980_list !! (n-1)
a087980_list = 1 : filter f [2..] where
f x = isPrefixOf ps a000040_list && all (< 0) (zipWith (-) (tail es) es)
where ps = a027748_row x; es = a124010_row x
-- Reinhard Zumkeller, Apr 13 2015
-
selQ[k_] := Module[{n = k, e = IntegerExponent[k, 2], t}, n /= 2^e; For[p = 3, True, p = NextPrime[p], t = IntegerExponent[n, p]; If[t == 0, Return[n == 1]]; If[t >= e, Return[False]]; e = t; n /= p^e]];
Select[Range[12000], selQ] (* Jean-François Alcover, Mar 27 2020, after first PARI program *)
-
is(n)=my(e=valuation(n,2),t); n>>=e; forprime(p=3,, t=valuation(n,p); if(t==0, return(n==1)); if(t>=e, return(0)); e=t; n/=p^e) \\ Charles R Greathouse IV, Jun 25 2017
-
list(lim)=my(v=[],u=powers(2,logint(lim\=1,2)),w,p=2,t); forprime(q=3,, w=List(); for(i=1,#u, t=u[i]; for(e=1,valuation(u[i],p)-1, t*=q; if(t>lim, break); listput(w,t))); v=concat(v,Vec(u)); if(#w==0, break); u=w; p=q); Set(v) \\ Charles R Greathouse IV, Jun 25 2017
A087443
Least integer of each prime signature ordered first by sum of exponents and then by least integer value.
Original entry on oeis.org
1, 2, 4, 6, 8, 12, 30, 16, 24, 36, 60, 210, 32, 48, 72, 120, 180, 420, 2310, 64, 96, 144, 216, 240, 360, 840, 900, 1260, 4620, 30030, 128, 192, 288, 432, 480, 720, 1080, 1680, 1800, 2520, 6300, 9240, 13860, 60060, 510510, 256, 384, 576, 864, 960, 1296, 1440
Offset: 0
1;
2;
4,6;
8,12,30;
16,24,36,60,210;
32,48,72,120,180,420,2310;
64,96,144,216,240,360,840,900,1260,4620,30030;
128,192,288,432,480,720,1080,1680,1800,2520,6300,9240,13860,60060,510510;
-
b:= proc(n, i, l)
`if`(n=0, [mul(ithprime(t)^l[t], t=1..nops(l))],
`if`(i=1, b(0, 0, [l[], 1$n]), [b(n, i-1, l)[],
`if`(i>n, [], b(n-i, i, [l[], i]))[]]))
end:
T:= n-> sort(b(n$2, []))[]:
seq(T(n), n=0..10); # Alois P. Heinz, Jun 13 2012
-
b[n_, i_, l_] := b[n, i, l] = If[n == 0, Join[{Product[Prime[t]^l[[t]], {t, 1, Length[l]}]}], If[i == 1, b[0, 0, Join[l, Table[1, {n}]]], Join[b[n, i - 1, l], If[i > n, {}, b[n - i, i, Append[l, i]]]]]];
T[n_] := Sort[b[n, n, {}]];
Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 06 2017, after Alois P. Heinz *)
A332626
Sum of least integers of prime signatures over all partitions of n into distinct parts.
Original entry on oeis.org
1, 2, 4, 20, 40, 152, 664, 1760, 5680, 24752, 138064, 356480, 1568320, 5886752, 32781664, 266420000, 726928960, 3135277952, 16299729664, 81402739520, 640678081600, 7084434124352, 18897678264064, 92846198695040, 464088929482240, 3347512310365952
Offset: 0
a(5) = 2^5 + 2^4*3^1 + 2^3*3^2 = 32 + 48 + 72 = 152.
-
b:= proc(n, i, j) option remember; `if`(i*(i+1)/2 b(n$2, 1):
seq(a(n), n=0..30);
-
b[n_, i_, j_] := b[n, i, j] = If[i(i+1)/2 < n, 0, If[n == 0, 1, b[n, i - 1, j] + Prime[j]^i b[n - i, Min[n - i, i - 1], j + 1]]];
a[n_] := b[n, n, 1];
a /@ Range[0, 30] (* Jean-François Alcover, May 04 2020, after Maple *)
A332644
Largest of the least integers of prime signatures over all partitions of n into distinct parts.
Original entry on oeis.org
1, 2, 4, 12, 24, 72, 360, 720, 2160, 10800, 75600, 151200, 453600, 2268000, 15876000, 174636000, 349272000, 1047816000, 5239080000, 36673560000, 403409160000, 5244319080000, 10488638160000, 31465914480000, 157329572400000, 1101307006800000, 12114377074800000
Offset: 0
Cf.
A000009,
A000040,
A000217,
A002110,
A002260,
A003056,
A001221,
A001222,
A007814,
A037126,
A046523,
A123578,
A328524.
-
b:= proc(n, i, j) option remember;
`if`(i*(i+1)/2 b(n$2, 1):
seq(a(n), n=0..30);
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, a(n-1)*
ithprime(n-(t-> t*(t+1)/2)(floor((sqrt(8*n-7)-1)/2))))
end:
seq(a(n), n=0..30);
-
b[n_, i_, j_] := b[n, i, j] = If[i(i+1)/2 < n, 0, If[n == 0, 1, Max[b[n, i - 1, j], Prime[j]^i b[n - i, Min[n - i, i - 1], j + 1]]]];
a[n_] := b[n, n, 1];
a /@ Range[0, 30] (* Jean-François Alcover, May 07 2020, after 1st Maple program *)
Showing 1-4 of 4 results.
Comments