cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A328671 Numbers whose binary indices are relatively prime and pairwise indivisible.

Original entry on oeis.org

1, 6, 12, 18, 20, 22, 24, 28, 48, 56, 66, 68, 70, 72, 76, 80, 82, 84, 86, 88, 92, 96, 104, 112, 120, 132, 144, 148, 176, 192, 196, 208, 212, 224, 240, 258, 264, 272, 274, 280, 296, 304, 312, 320, 322, 328, 336, 338, 344, 352, 360, 368, 376, 384, 400, 416, 432
Offset: 1

Views

Author

Gus Wiseman, Oct 29 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The sequence of terms together with their binary expansions and binary indices begins:
    1:         1 ~ {1}
    6:       110 ~ {2,3}
   12:      1100 ~ {3,4}
   18:     10010 ~ {2,5}
   20:     10100 ~ {3,5}
   22:     10110 ~ {2,3,5}
   24:     11000 ~ {4,5}
   28:     11100 ~ {3,4,5}
   48:    110000 ~ {5,6}
   56:    111000 ~ {4,5,6}
   66:   1000010 ~ {2,7}
   68:   1000100 ~ {3,7}
   70:   1000110 ~ {2,3,7}
   72:   1001000 ~ {4,7}
   76:   1001100 ~ {3,4,7}
   80:   1010000 ~ {5,7}
   82:   1010010 ~ {2,5,7}
   84:   1010100 ~ {3,5,7}
   86:   1010110 ~ {2,3,5,7}
   88:   1011000 ~ {4,5,7}
		

Crossrefs

The version for prime indices (instead of binary indices) is A328677.
Numbers whose binary indices are relatively prime are A291166.
Numbers whose distinct prime indices are pairwise indivisible are A316476.
BII-numbers of antichains are A326704.
Relatively prime partitions whose distinct parts are pairwise indivisible are A328676, with strict case A328678.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Select[Range[100],GCD@@bpe[#]==1&&stableQ[bpe[#],Divisible]&]

Formula

Intersection of A291166 with A326704.

A328676 Number of relatively prime integer partitions of n whose distinct parts are pairwise indivisible.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 4, 3, 5, 5, 11, 7, 16, 14, 18, 22, 34, 30, 47, 45, 59, 66, 89, 90, 118, 125, 159, 169, 218, 225, 289, 304, 369, 400, 486, 520, 636, 680, 806, 873, 1051, 1105, 1333, 1424, 1664, 1803, 2122, 2253, 2659, 2841, 3283, 3560, 4118, 4388, 5096
Offset: 1

Views

Author

Gus Wiseman, Oct 29 2019

Keywords

Examples

			The a(4) = 1 through a(11) = 11 partitions:
  1111  32     111111  43       53        54         73          65
        11111          52       332       72         433         74
                       322      11111111  522        532         83
                       1111111            3222       3322        92
                                          111111111  1111111111  443
                                                                 533
                                                                 722
                                                                 3332
                                                                 5222
                                                                 32222
                                                                 11111111111
		

Crossrefs

The Heinz numbers of these partitions are given by A328677.
The strict case is A328678.
The binary index version is A328671.
Relatively prime partitions are A000837.
Partitions whose distinct parts are pairwise indivisible are A305148.

Programs

  • Mathematica
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[IntegerPartitions[n],GCD@@#==1&&stableQ[#,Divisible]&]],{n,30}]
Showing 1-2 of 2 results.