A087086
Primitive sets of integers, each subset mapped onto a unique binary integer, values here shown in decimal.
Original entry on oeis.org
0, 1, 2, 4, 6, 8, 12, 16, 18, 20, 22, 24, 28, 32, 40, 48, 56, 64, 66, 68, 70, 72, 76, 80, 82, 84, 86, 88, 92, 96, 104, 112, 120, 128, 132, 144, 148, 160, 176, 192, 196, 208, 212, 224, 240, 256, 258, 264, 272, 274, 280, 288, 296, 304, 312, 320, 322, 328, 336, 338, 344
Offset: 0
Alan Sutcliffe (alansut(AT)ntlworld.com), Aug 14 2003
a(10)=22 since the 10th primitive set counting from 0 is {5,3,2}, which maps onto 10110 binary = 22 decimal.
From _Gus Wiseman_, Oct 31 2019: (Start)
The sequence of terms together with their binary expansions and binary indices begins:
0: 0 ~ {}
1: 1 ~ {1}
2: 10 ~ {2}
4: 100 ~ {3}
6: 110 ~ {2,3}
8: 1000 ~ {4}
12: 1100 ~ {3,4}
16: 10000 ~ {5}
18: 10010 ~ {2,5}
20: 10100 ~ {3,5}
22: 10110 ~ {2,3,5}
24: 11000 ~ {4,5}
28: 11100 ~ {3,4,5}
(End)
- Alan Sutcliffe, Divisors and Common Factors in Sets of Integers, awaiting publication
A051026 gives the number of primitive subsets of the integers 1 to n.
The version for prime indices (rather than binary indices) is
A316476.
The relatively prime case is
A328671.
Partitions with no consecutive divisible parts are
A328171.
Compositions without consecutive divisible parts are
A328460.
A ranking of antichains is
A326704.
-
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[0,100],stableQ[Join@@Position[Reverse[IntegerDigits[#,2]],1],Divisible]&] (* Gus Wiseman, Oct 31 2019 *)
A328677
Numbers whose distinct prime indices are relatively prime and pairwise indivisible.
Original entry on oeis.org
2, 4, 8, 15, 16, 32, 33, 35, 45, 51, 55, 64, 69, 75, 77, 85, 93, 95, 99, 119, 123, 128, 135, 141, 143, 145, 153, 155, 161, 165, 175, 177, 187, 201, 205, 207, 209, 215, 217, 219, 221, 225, 245, 249, 253, 255, 256, 265, 275, 279, 287, 291, 295, 297, 309, 323
Offset: 1
The sequence of terms together with their prime indices begins:
2: {1}
4: {1,1}
8: {1,1,1}
15: {2,3}
16: {1,1,1,1}
32: {1,1,1,1,1}
33: {2,5}
35: {3,4}
45: {2,2,3}
51: {2,7}
55: {3,5}
64: {1,1,1,1,1,1}
69: {2,9}
75: {2,3,3}
77: {4,5}
85: {3,7}
93: {2,11}
95: {3,8}
99: {2,2,5}
119: {4,7}
These are the Heinz numbers of the partitions counted by
A328676.
Numbers whose prime indices are relatively prime are
A289509.
Partitions whose distinct parts are pairwise indivisible are
A305148.
The version for binary indices (instead of prime indices) is
A328671.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[100],GCD@@primeMS[#]==1&&stableQ[primeMS[#],Divisible]&]
A371294
Numbers whose binary indices are connected and pairwise indivisible, where two numbers are connected iff they have a common factor. A hybrid ranking sequence for connected antichains of multisets.
Original entry on oeis.org
1, 2, 4, 8, 16, 32, 40, 64, 128, 160, 256, 288, 296, 416, 512, 520, 544, 552, 640, 672, 800, 808, 928, 1024, 2048, 2176, 2304, 2432, 2560, 2688, 2816, 2944, 4096, 8192, 8200, 8224, 8232, 8320, 8352, 8480, 8488, 8608, 8704, 8712, 8736, 8744, 8832, 8864, 8992
Offset: 1
The terms together with their prime indices of binary indices begin:
1: {{}}
2: {{1}}
4: {{2}}
8: {{1,1}}
16: {{3}}
32: {{1,2}}
40: {{1,1},{1,2}}
64: {{4}}
128: {{1,1,1}}
160: {{1,2},{1,1,1}}
256: {{2,2}}
288: {{1,2},{2,2}}
296: {{1,1},{1,2},{2,2}}
416: {{1,2},{1,1,1},{2,2}}
512: {{1,3}}
520: {{1,1},{1,3}}
544: {{1,2},{1,3}}
552: {{1,1},{1,2},{1,3}}
640: {{1,1,1},{1,3}}
672: {{1,2},{1,1,1},{1,3}}
800: {{1,2},{2,2},{1,3}}
808: {{1,1},{1,2},{2,2},{1,3}}
928: {{1,2},{1,1,1},{2,2},{1,3}}
For binary indices of binary indices we have
A326750, non-primitive
A326749.
For prime indices of prime indices we have
A329559, non-primitive
A305078.
For binary indices of prime indices we have
A371445, non-primitive
A325118.
A007718 counts non-isomorphic connected multiset partitions.
A048143 counts connected antichains of sets.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
Cf.
A001222,
A051026,
A285572,
A303362,
A304713,
A305079,
A316476,
A319496,
A319719,
A326704,
A371446.
-
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],stableQ[bpe[#],Divisible]&&connectedQ[prix/@bpe[#]]&]
A328676
Number of relatively prime integer partitions of n whose distinct parts are pairwise indivisible.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 4, 3, 5, 5, 11, 7, 16, 14, 18, 22, 34, 30, 47, 45, 59, 66, 89, 90, 118, 125, 159, 169, 218, 225, 289, 304, 369, 400, 486, 520, 636, 680, 806, 873, 1051, 1105, 1333, 1424, 1664, 1803, 2122, 2253, 2659, 2841, 3283, 3560, 4118, 4388, 5096
Offset: 1
The a(4) = 1 through a(11) = 11 partitions:
1111 32 111111 43 53 54 73 65
11111 52 332 72 433 74
322 11111111 522 532 83
1111111 3222 3322 92
111111111 1111111111 443
533
722
3332
5222
32222
11111111111
The Heinz numbers of these partitions are given by
A328677.
The binary index version is
A328671.
Relatively prime partitions are
A000837.
Partitions whose distinct parts are pairwise indivisible are
A305148.
-
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[IntegerPartitions[n],GCD@@#==1&&stableQ[#,Divisible]&]],{n,30}]
A329560
BII-numbers of antichains of sets with empty intersection.
Original entry on oeis.org
0, 3, 9, 10, 11, 12, 18, 33, 52, 129, 130, 131, 132, 136, 137, 138, 139, 140, 144, 146, 148, 160, 161, 164, 176, 180, 192, 258, 264, 266, 268, 274, 288, 292, 304, 308, 513, 520, 521, 524, 528, 532, 545, 560, 564, 772, 776, 780, 784, 788, 800, 804, 816, 820, 832
Offset: 1
The sequence of terms together with their binary expansions and corresponding set-systems begins:
0: 0 ~ {}
3: 11 ~ {{1},{2}}
9: 1001 ~ {{1},{3}}
10: 1010 ~ {{2},{3}}
11: 1011 ~ {{1},{2},{3}}
12: 1100 ~ {{1,2},{3}}
18: 10010 ~ {{2},{1,3}}
33: 100001 ~ {{1},{2,3}}
52: 110100 ~ {{1,2},{1,3},{2,3}}
129: 10000001 ~ {{1},{4}}
130: 10000010 ~ {{2},{4}}
131: 10000011 ~ {{1},{2},{4}}
132: 10000100 ~ {{1,2},{4}}
136: 10001000 ~ {{3},{4}}
137: 10001001 ~ {{1},{3},{4}}
138: 10001010 ~ {{2},{3},{4}}
139: 10001011 ~ {{2},{3},{4}}
140: 10001100 ~ {{1,2},{3},{4}}
144: 10010000 ~ {{1,3},{4}}
146: 10010010 ~ {{2},{1,3},{4}}
148: 10010100 ~ {{1,2},{1,3},{4}}
BII-numbers of intersecting set-systems with empty intersecting are
A326912.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[0,100],#==0||Intersection@@bpe/@bpe[#]=={}&&stableQ[bpe/@bpe[#],SubsetQ]&]
A328678
Number of strict, pairwise indivisible, relatively prime integer partitions of n.
Original entry on oeis.org
1, 0, 0, 0, 1, 0, 2, 1, 2, 2, 4, 3, 5, 4, 5, 7, 10, 9, 12, 11, 14, 15, 22, 20, 25, 26, 32, 33, 44, 41, 54, 49, 62, 67, 80, 80, 100, 100, 118, 121, 152, 148, 179, 178, 210, 219, 267, 259, 316, 313, 363, 380, 449, 448, 529, 532, 619, 640, 745, 749, 867, 889
Offset: 1
The a(1) = 1 through a(20) = 11 partitions (A..H = 10..20) (empty columns not shown):
1 32 43 53 54 73 65 75 76 95 87 97 98 B7 A9 B9
52 72 532 74 543 85 B3 B4 B5 A7 D5 B8 D7
83 732 94 743 D2 D3 B6 765 C7 H3
92 A3 752 654 754 C5 873 D6 875
B2 753 853 D4 954 E5 965
952 E3 972 F4 974
B32 F2 B43 G3 A73
764 B52 H2 B54
A43 D32 865 B72
7532 964 D43
B53 D52
7543
The Heinz numbers of these partitions are the squarefree terms of
A328677.
Pairwise indivisible partitions are
A303362.
Strict, relatively prime partitions are
A078374.
A ranking function using binary indices is
A328671.
-
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&GCD@@#==1&&stableQ[#,Divisible]&]],{n,30}]
A329366
Numbers whose distinct prime indices are pairwise indivisible (stable) and pairwise non-relatively prime (intersecting).
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 91, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
8: {1,1,1}
9: {2,2}
11: {5}
13: {6}
16: {1,1,1,1}
17: {7}
19: {8}
23: {9}
25: {3,3}
27: {2,2,2}
29: {10}
31: {11}
32: {1,1,1,1,1}
37: {12}
Heinz numbers of the partitions counted by
A328871.
Replacing "intersecting" with "relatively prime" gives
A328677.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[100],stableQ[Union[primeMS[#]],GCD[#1,#2]==1&]&&stableQ[Union[primeMS[#]],Divisible]&]
A328871
Number of integer partitions of n whose distinct parts are pairwise indivisible (stable) and pairwise non-relatively prime (intersecting).
Original entry on oeis.org
1, 1, 2, 2, 3, 2, 4, 2, 4, 3, 5, 2, 6, 2, 7, 5, 7, 2, 10, 2, 11, 7, 14, 2, 16, 4, 19, 8, 22, 2, 30, 3, 29, 14, 37, 8, 48, 4, 50, 19, 59, 5, 82, 4, 81, 28, 93, 8, 128, 9, 128, 38, 147, 8, 199, 19, 196, 52, 223, 12, 308
Offset: 0
The a(1) = 1 through a(10) = 5 partitions (A = 10):
1 2 3 4 5 6 7 8 9 A
11 111 22 11111 33 1111111 44 333 55
1111 222 2222 111111111 64
111111 11111111 22222
1111111111
The Heinz numbers of these partitions are
A329366.
Replacing "intersecting" with "relatively prime" gives
A328676.
Intersecting partitions are
A328673.
-
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[IntegerPartitions[n],stableQ[Union[#],Divisible]&&stableQ[Union[#],GCD[#1,#2]==1&]&]],{n,0,30}]
Showing 1-8 of 8 results.
Comments