cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A087087 Coprime sets of integers, each subset mapped onto a unique binary integer, values here shown in decimal.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 28, 29, 32, 33, 48, 49, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 76, 77, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 96, 97, 112, 113, 128, 129, 132, 133, 144, 145, 148, 149, 192, 193, 196, 197
Offset: 0

Views

Author

Alan Sutcliffe (alansut(AT)ntlworld.com), Aug 16 2003

Keywords

Comments

A coprime set of integers has no pair of elements for which (i,j)=0. Each element i in a subset contributes 2^(i-1) to the binary value for that subset. The integers missing from the sequence correspond to non-coprime subsets.

Examples

			a(11)=13 since the 11th coprime set counting from 0 is {4,3,1}, which maps onto 1101 binary = 13 decimal.
		

References

  • Alan Sutcliffe, Divisors and Common Factors in Sets of Integers, awaiting publication.

Crossrefs

A087086 gives the corresponding values for the primitive sets of integers. A084422 gives the number of coprime subsets of the integers 1 to n.

Programs

  • Mathematica
    a = {}; Do[set = Select[Range[Log2[n] + 1], Reverse[IntegerDigits[n, 2]][[#]] == 1 &]; If[Union@Flatten@Outer[If[#1 == #2, 1, GCD[#1, #2]] &, set, set] == {1}, AppendTo[a, n]], {n, 200}]; a (* Ivan Neretin, Aug 14 2015 *)

A371452 Number of connected components of the prime indices of the binary indices of n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 2, 3, 3, 4, 3, 4, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5
Offset: 1

Views

Author

Gus Wiseman, Apr 01 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The prime indices of binary indices of 281492156579880 are {{1,1},{1,2},{3,4},{4,4}}, with 2 connected components {{1,1},{1,2}} and {{3,4},{4,4}}, so a(281492156579880) = 2.
		

Crossrefs

Positions of first appearances are A080355, opposite A325782.
For prime indices of prime indices we have A305079, ones A305078.
For binary indices of binary indices we have A326753, ones A326749.
Positions of ones are A371291.
For binary indices of prime indices we have A371451, ones A325118.
A001187 counts connected graphs.
A007718 counts non-isomorphic connected multiset partitions.
A048143 counts connected antichains of sets.
A048793 lists binary indices, reverse A272020, length A000120, sum A029931.
A070939 gives length of binary expansion.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A326964 counts connected set-systems, covering A323818.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}], Length[Intersection@@s[[#]]]>0&]},If[c=={},s, csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[csm[prix/@bix[n]]],{n,100}]

A368533 Numbers whose binary indices are all squarefree.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23, 32, 33, 34, 35, 36, 37, 38, 39, 48, 49, 50, 51, 52, 53, 54, 55, 64, 65, 66, 67, 68, 69, 70, 71, 80, 81, 82, 83, 84, 85, 86, 87, 96, 97, 98, 99, 100, 101, 102, 103, 112, 113, 114, 115, 116, 117, 118, 119, 512
Offset: 1

Views

Author

Gus Wiseman, Mar 23 2024

Keywords

Comments

The complement first differs from A115419 in having 128.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The terms together with their binary expansions and binary indices begin:
    0:       0 ~ {}
    1:       1 ~ {1}
    2:      10 ~ {2}
    3:      11 ~ {1,2}
    4:     100 ~ {3}
    5:     101 ~ {1,3}
    6:     110 ~ {2,3}
    7:     111 ~ {1,2,3}
   16:   10000 ~ {5}
   17:   10001 ~ {1,5}
   18:   10010 ~ {2,5}
   19:   10011 ~ {1,2,5}
   20:   10100 ~ {3,5}
   21:   10101 ~ {1,3,5}
   22:   10110 ~ {2,3,5}
   23:   10111 ~ {1,2,3,5}
   32:  100000 ~ {6}
   33:  100001 ~ {1,6}
   34:  100010 ~ {2,6}
   35:  100011 ~ {1,2,6}
   36:  100100 ~ {3,6}
   37:  100101 ~ {1,3,6}
   38:  100110 ~ {2,3,6}
		

Crossrefs

Set multipartitions: A049311, A050320, A089259, A116540.
For prime indices instead of binary indices we have A302478.
The case of prime binary indices is A326782.
The case of squarefree product is A371289.
For prime-power product we have A371290.
For nonprime binary indices we have A371443, composite A371444.
The semiprime case is A371453, squarefree case of A371454.
A005117 lists squarefree numbers.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,100],And@@SquareFreeQ/@bpe[#]&]
  • Python
    from math import isqrt
    from sympy import mobius
    def A368533(n):
        def f(x,n): return int(n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))
        def A005117(n):
            m, k = n, f(n,n)
            while m != k: m, k = k, f(k,n)
            return m
        return sum(1<<A005117(i)-1 for i, j in enumerate(bin(n-1)[:1:-1],1) if j=='1') # Chai Wah Wu, Oct 24 2024

A371291 Numbers whose binary indices are connected, where two numbers are connected iff they have a common factor.

Original entry on oeis.org

1, 2, 4, 8, 10, 16, 32, 34, 36, 38, 40, 42, 44, 46, 64, 128, 130, 136, 138, 160, 162, 164, 166, 168, 170, 172, 174, 256, 260, 288, 290, 292, 294, 296, 298, 300, 302, 416, 418, 420, 422, 424, 426, 428, 430, 512, 514, 520, 522, 528, 530, 536, 538, 544, 546, 548
Offset: 1

Views

Author

Gus Wiseman, Mar 27 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
The empty set is not considered connected.

Examples

			The terms together with their binary expansions and binary indices begin:
    1:          1 ~ {1}
    2:         10 ~ {2}
    4:        100 ~ {3}
    8:       1000 ~ {4}
   10:       1010 ~ {2,4}
   16:      10000 ~ {5}
   32:     100000 ~ {6}
   34:     100010 ~ {2,6}
   36:     100100 ~ {3,6}
   38:     100110 ~ {2,3,6}
   40:     101000 ~ {4,6}
   42:     101010 ~ {2,4,6}
   44:     101100 ~ {3,4,6}
   46:     101110 ~ {2,3,4,6}
   64:    1000000 ~ {7}
  128:   10000000 ~ {8}
  130:   10000010 ~ {2,8}
  136:   10001000 ~ {4,8}
  138:   10001010 ~ {2,4,8}
  160:   10100000 ~ {6,8}
  162:   10100010 ~ {2,6,8}
  164:   10100100 ~ {3,6,8}
		

Crossrefs

For prime indices of each prime index we have A305078.
The opposite version is A325118.
For binary indices of each binary index we have A326749.
The pairwise indivisible case is A371294, opposite A371445.
Positions of ones in A371452.
A001187 counts connected graphs.
A007718 counts non-isomorphic connected multiset partitions.
A048143 counts connected antichains of sets.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A070939 gives length of binary expansion.
A087086 lists numbers whose binary indices are pairwise indivisible.
A096111 gives product of binary indices.
A326964 counts connected set-systems, covering A323818.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,1000],Length[csm[prix/@bpe[#]]]==1&]

A371294 Numbers whose binary indices are connected and pairwise indivisible, where two numbers are connected iff they have a common factor. A hybrid ranking sequence for connected antichains of multisets.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 40, 64, 128, 160, 256, 288, 296, 416, 512, 520, 544, 552, 640, 672, 800, 808, 928, 1024, 2048, 2176, 2304, 2432, 2560, 2688, 2816, 2944, 4096, 8192, 8200, 8224, 8232, 8320, 8352, 8480, 8488, 8608, 8704, 8712, 8736, 8744, 8832, 8864, 8992
Offset: 1

Views

Author

Gus Wiseman, Mar 28 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The terms together with their prime indices of binary indices begin:
    1: {{}}
    2: {{1}}
    4: {{2}}
    8: {{1,1}}
   16: {{3}}
   32: {{1,2}}
   40: {{1,1},{1,2}}
   64: {{4}}
  128: {{1,1,1}}
  160: {{1,2},{1,1,1}}
  256: {{2,2}}
  288: {{1,2},{2,2}}
  296: {{1,1},{1,2},{2,2}}
  416: {{1,2},{1,1,1},{2,2}}
  512: {{1,3}}
  520: {{1,1},{1,3}}
  544: {{1,2},{1,3}}
  552: {{1,1},{1,2},{1,3}}
  640: {{1,1,1},{1,3}}
  672: {{1,2},{1,1,1},{1,3}}
  800: {{1,2},{2,2},{1,3}}
  808: {{1,1},{1,2},{2,2},{1,3}}
  928: {{1,2},{1,1,1},{2,2},{1,3}}
		

Crossrefs

Connected case of A087086, relatively prime A328671.
For binary indices of binary indices we have A326750, non-primitive A326749.
For prime indices of prime indices we have A329559, non-primitive A305078.
Primitive case of A371291 = positions of ones in A371452.
For binary indices of prime indices we have A371445, non-primitive A325118.
A001187 counts connected graphs.
A007718 counts non-isomorphic connected multiset partitions.
A048143 counts connected antichains of sets.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326964 counts connected set-systems, covering A323818.

Programs

  • Mathematica
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],stableQ[bpe[#],Divisible]&&connectedQ[prix/@bpe[#]]&]

Formula

Intersection of A087086 and A371291.

A371445 Numbers whose distinct prime indices are binary carry-connected and have no binary containments.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 55, 59, 61, 64, 65, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 115, 121, 125, 127, 128, 131, 137, 139, 143, 145, 149, 151, 157, 163, 167, 169, 173, 179, 181
Offset: 1

Views

Author

Gus Wiseman, Mar 30 2024

Keywords

Comments

Also Heinz numbers of binary carry-connected integer partitions whose distinct parts have no binary containments, counted by A371446.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A binary carry of two positive integers is an overlap of binary indices. A multiset is said to be binary carry-connected iff the graph whose vertices are the elements and whose edges are binary carries is connected.
A binary containment is a containment of binary indices. For example, the numbers {3,5} have binary indices {{1,2},{1,3}}, so there is a binary carry but not a binary containment.

Examples

			The terms together with their prime indices begin:
     2: {1}            37: {12}              97: {25}
     3: {2}            41: {13}             101: {26}
     4: {1,1}          43: {14}             103: {27}
     5: {3}            47: {15}             107: {28}
     7: {4}            49: {4,4}            109: {29}
     8: {1,1,1}        53: {16}             113: {30}
     9: {2,2}          55: {3,5}            115: {3,9}
    11: {5}            59: {17}             121: {5,5}
    13: {6}            61: {18}             125: {3,3,3}
    16: {1,1,1,1}      64: {1,1,1,1,1,1}    127: {31}
    17: {7}            65: {3,6}            128: {1,1,1,1,1,1,1}
    19: {8}            67: {19}             131: {32}
    23: {9}            71: {20}             137: {33}
    25: {3,3}          73: {21}             139: {34}
    27: {2,2,2}        79: {22}             143: {5,6}
    29: {10}           81: {2,2,2,2}        145: {3,10}
    31: {11}           83: {23}             149: {35}
    32: {1,1,1,1,1}    89: {24}             151: {36}
		

Crossrefs

Contains all powers of primes A000961 except 1.
Case of A325118 (counted by A325098) without binary containments.
For binary indices of binary indices we have A326750 = A326704 /\ A326749.
For prime indices of prime indices we have A329559 = A305078 /\ A316476.
An opposite version is A371294 = A087086 /\ A371291.
Partitions of this type are counted by A371446.
Carry-connected case of A371455 (counted by A325109).
A001187 counts connected graphs.
A007718 counts non-isomorphic connected multiset partitions.
A048143 counts connected antichains of sets.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A070939 gives length of binary expansion.
A326964 counts connected set-systems, covering A323818.

Programs

  • Mathematica
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}], Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
    Select[Range[100],stableQ[bpe/@prix[#],SubsetQ] && Length[csm[bpe/@prix[#]]]==1&]

Formula

Intersection of A371455 and A325118.

A371451 Number of connected components of the binary indices of the prime indices of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 1, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Apr 01 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The binary indices of prime indices of 805 are {{1,2},{3},{1,4}}, with 2 connected components {{1,2},{1,4}} and {{3}}, so a(805) = 2.
		

Crossrefs

For prime indices of prime indices we have A305079, ones A305078.
Positions of ones are A325118.
Positions of first appearances are A325782.
For prime indices of binary indices we have A371452, ones A371291.
For binary indices of binary indices we have A326753, ones A326749.
A001187 counts connected graphs.
A007718 counts non-isomorphic connected multiset partitions.
A048143 counts connected antichains of sets.
A048793 lists binary indices, reverse A272020, length A000120, sum A029931.
A070939 gives length of binary expansion.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A326964 counts connected set-systems, covering A323818.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}], Length[Intersection@@s[[#]]]>0&]},If[c=={},s, csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[csm[bix/@prix[n]]],{n,100}]
  • PARI
    zero_first_elem_and_bitmask_connected_elems(ys) = { my(cs = List([ys[1]]), i=1); ys[1] = 0; while(i<=#cs, for(j=2, #ys, if(ys[j]&&(0!=bitand(cs[i], ys[j])), listput(cs, ys[j]); ys[j] = 0)); i++); (ys); };
    A371451(n) = if(1==n, 0, my(cs = apply(p -> primepi(p), factor(n)[, 1]~), s=0); while(#cs, cs = select(c -> c, zero_first_elem_and_bitmask_connected_elems(cs)); s++); (s)); \\ Antti Karttunen, Jan 29 2025

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 29 2025

A371446 Number of carry-connected integer partitions whose distinct parts have no binary containments.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 4, 2, 5, 4, 4, 4, 8, 4, 7, 7, 12, 10, 14, 12, 15, 19, 19, 21, 32, 27, 33, 40, 46, 47, 61, 52, 75, 89, 95, 104, 129, 129, 149, 176, 188, 208, 249, 257, 296, 341, 373, 394, 476, 496, 552
Offset: 0

Views

Author

Gus Wiseman, Apr 02 2024

Keywords

Comments

These partitions are ranked by A371445.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A binary carry of two positive integers is an overlap of binary indices. An integer partition is binary carry-connected iff the graph with one vertex for each part and edges corresponding to binary carries is connected.
A binary containment is a containment of binary indices. For example, the numbers {3,5} have binary indices {{1,2},{1,3}}, so there is a binary carry but not a binary containment.

Examples

			The a(12) = 8 through a(14) = 7 partitions:
  (12)             (13)                         (14)
  (6,6)            (10,3)                       (7,7)
  (9,3)            (5,5,3)                      (9,5)
  (4,4,4)          (1,1,1,1,1,1,1,1,1,1,1,1,1)  (6,5,3)
  (6,3,3)                                       (5,3,3,3)
  (3,3,3,3)                                     (2,2,2,2,2,2,2)
  (2,2,2,2,2,2)                                 (1,1,1,1,1,1,1,1,1,1,1,1,1,1)
  (1,1,1,1,1,1,1,1,1,1,1,1)
		

Crossrefs

The first condition (carry-connected) is A325098.
The second condition (stable) is A325109.
Ranks for binary indices of binary indices are A326750 = A326704 /\ A326749.
Ranks for prime indices of prime indices are A329559 = A305078 /\ A316476.
Ranks for prime indices of binary indices are A371294 = A087086 /\ A371291.
Ranks for binary indices of prime indices are A371445 = A325118 /\ A371455.
A001187 counts connected graphs.
A007718 counts non-isomorphic connected multiset partitions.
A048143 counts connected antichains of sets.
A048793 lists binary indices, reverse A272020, length A000120, sum A029931.
A070939 gives length of binary expansion.
A326964 counts connected set-systems, covering A323818.

Programs

  • Mathematica
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}], Length[Intersection@@s[[#]]]>0&]},If[c=={},s, csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[IntegerPartitions[n], stableQ[bix/@Union[#],SubsetQ]&&Length[csm[bix/@#]]<=1&]],{n,0,30}]

A329561 BII-numbers of intersecting antichains of sets.

Original entry on oeis.org

0, 1, 2, 4, 8, 16, 20, 32, 36, 48, 52, 64, 128, 256, 260, 272, 276, 320, 512, 516, 544, 548, 576, 768, 772, 832, 1024, 1040, 1056, 1072, 1088, 2048, 2064, 2080, 2096, 2112, 2304, 2320, 2368, 2560, 2592, 2624, 2816, 2880, 3072, 3088, 3104, 3120, 3136, 4096
Offset: 1

Views

Author

Gus Wiseman, Nov 28 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets of positive integers) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
A set-system is intersecting if no two edges are disjoint. It is an antichain if no edge is a proper subset of any other.

Examples

			The sequence of terms together with their corresponding set-systems begins:
    0: {}
    1: {{1}}
    2: {{2}}
    4: {{1,2}}
    8: {{3}}
   16: {{1,3}}
   20: {{1,2},{1,3}}
   32: {{2,3}}
   36: {{1,2},{2,3}}
   48: {{1,3},{2,3}}
   52: {{1,2},{1,3},{2,3}}
   64: {{1,2,3}}
  128: {{4}}
  256: {{1,4}}
  260: {{1,2},{1,4}}
  272: {{1,3},{1,4}}
  276: {{1,2},{1,3},{1,4}}
  320: {{1,2,3},{1,4}}
  512: {{2,4}}
  516: {{1,2},{2,4}}
		

Crossrefs

Intersection of A326704 (antichains) and A326910 (intersecting).
Covering intersecting antichains of sets are counted by A305844.
BII-numbers of antichains with empty intersection are A329560.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Select[Range[0,1000],stableQ[bpe/@bpe[#],SubsetQ[#1,#2]||Intersection[#1,#2]=={}&]&]

A371453 Numbers whose binary indices are all squarefree semiprimes.

Original entry on oeis.org

32, 512, 544, 8192, 8224, 8704, 8736, 16384, 16416, 16896, 16928, 24576, 24608, 25088, 25120, 1048576, 1048608, 1049088, 1049120, 1056768, 1056800, 1057280, 1057312, 1064960, 1064992, 1065472, 1065504, 1073152, 1073184, 1073664, 1073696, 2097152, 2097184
Offset: 1

Views

Author

Gus Wiseman, Apr 02 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The terms together with their binary expansions and binary indices begin:
       32:                 100000 ~ {6}
      512:             1000000000 ~ {10}
      544:             1000100000 ~ {6,10}
     8192:         10000000000000 ~ {14}
     8224:         10000000100000 ~ {6,14}
     8704:         10001000000000 ~ {10,14}
     8736:         10001000100000 ~ {6,10,14}
    16384:        100000000000000 ~ {15}
    16416:        100000000100000 ~ {6,15}
    16896:        100001000000000 ~ {10,15}
    16928:        100001000100000 ~ {6,10,15}
    24576:        110000000000000 ~ {14,15}
    24608:        110000000100000 ~ {6,14,15}
    25088:        110001000000000 ~ {10,14,15}
    25120:        110001000100000 ~ {6,10,14,15}
  1048576:  100000000000000000000 ~ {21}
		

Crossrefs

Partitions of this type are counted by A002100, squarefree case of A101048.
For primes instead of squarefree semiprimes we get A326782.
For prime indices instead of binary indices we have A339113, A339112.
Allowing any squarefree numbers gives A368533.
This is the squarefree case of A371454.
A001358 lists squarefree semiprimes, squarefree A006881.
A005117 lists squarefree numbers.
A048793 lists binary indices, reverse A272020, length A000120, sum A029931.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Maple
    M:= 26: # for terms < 2^M
    P:= select(isprime, [$2..(M+1)/2]): nP:= nops(P):
    S:= select(`<`,{seq(seq(P[i]*P[j],i=1..j-1),j=1..nP)},M+1):
    R:= map(proc(s) local i; add(2^(i-1),i=s) end proc, combinat:-powerset(S) minus {{}}):
    sort(convert(R,list)); # Robert Israel, Apr 04 2024
  • Mathematica
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    sqfsemi[n_]:=SquareFreeQ[n]&&PrimeOmega[n]==2;
    Select[Range[10000],And@@sqfsemi/@bix[#]&]
  • Python
    def A371453(n): return sum(1<<A006881(i)-1 for i, j in enumerate(bin(n)[:1:-1],1) if j=='1')
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A371453(n):
        def f(x,n): return int(n+x+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
        def A006881(n):
            m, k = n, f(n,n)
            while m != k:
                m, k = k, f(k,n)
            return m
        return sum(1<<A006881(i)-1 for i, j in enumerate(bin(n)[:1:-1],1) if j=='1') # Chai Wah Wu, Aug 16 2024
Showing 1-10 of 14 results. Next