A371289
Numbers whose binary indices have squarefree product.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23, 32, 33, 48, 49, 64, 65, 66, 67, 68, 69, 70, 71, 80, 81, 82, 83, 84, 85, 86, 87, 96, 97, 112, 113, 512, 513, 516, 517, 576, 577, 580, 581, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1040, 1041, 1042
Offset: 1
The terms together with their binary expansions and binary indices begin:
0: 0 ~ {}
1: 1 ~ {1}
2: 10 ~ {2}
3: 11 ~ {1,2}
4: 100 ~ {3}
5: 101 ~ {1,3}
6: 110 ~ {2,3}
7: 111 ~ {1,2,3}
16: 10000 ~ {5}
17: 10001 ~ {1,5}
18: 10010 ~ {2,5}
19: 10011 ~ {1,2,5}
20: 10100 ~ {3,5}
21: 10101 ~ {1,3,5}
22: 10110 ~ {2,3,5}
23: 10111 ~ {1,2,3,5}
32: 100000 ~ {6}
33: 100001 ~ {1,6}
48: 110000 ~ {5,6}
49: 110001 ~ {1,5,6}
64: 1000000 ~ {7}
65: 1000001 ~ {1,7}
66: 1000010 ~ {2,7}
For prime instead of binary indices we have
A302505.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
Cf.
A325118,
A326782,
A371290,
A371291,
A371292,
A371293,
A371443,
A371446,
A371448,
A371449,
A371452,
A371453.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[0,100],SquareFreeQ[Times@@bpe[#]]&]
A371293
Numbers whose binary indices have (1) prime indices covering an initial interval and (2) squarefree product.
Original entry on oeis.org
1, 2, 3, 6, 7, 22, 23, 32, 33, 48, 49, 86, 87, 112, 113, 516, 517, 580, 581, 1110, 1111, 1136, 1137, 1604, 1605, 5206, 5207, 5232, 5233, 5700, 5701, 8212, 8213, 9236, 9237, 13332, 13333, 16386, 16387, 16450, 16451, 17474, 17475, 21570, 21571, 24576, 24577
Offset: 1
The terms together with their prime indices of binary indices begin:
1: {{}}
2: {{1}}
3: {{},{1}}
6: {{1},{2}}
7: {{},{1},{2}}
22: {{1},{2},{3}}
23: {{},{1},{2},{3}}
32: {{1,2}}
33: {{},{1,2}}
48: {{3},{1,2}}
49: {{},{3},{1,2}}
86: {{1},{2},{3},{4}}
87: {{},{1},{2},{3},{4}}
112: {{3},{1,2},{4}}
113: {{},{3},{1,2},{4}}
516: {{2},{1,3}}
517: {{},{2},{1,3}}
580: {{2},{4},{1,3}}
581: {{},{2},{4},{1,3}}
Without the covering condition we have
A371289.
Without squarefree product we have
A371292.
Interchanging binary and prime indices gives
A371448.
A000009 counts partitions covering initial interval, compositions
A107429.
A011782 counts multisets covering an initial interval.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A131689 counts patterns by number of distinct parts.
A326701 lists BII-numbers of set partitions.
A368533 lists numbers with squarefree binary indices, prime indices
A302478.
-
normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[1000],SquareFreeQ[Times @@ bpe[#]]&&normQ[Join@@prix/@bpe[#]]&]
A371443
Numbers whose binary indices are nonprime numbers.
Original entry on oeis.org
1, 8, 9, 32, 33, 40, 41, 128, 129, 136, 137, 160, 161, 168, 169, 256, 257, 264, 265, 288, 289, 296, 297, 384, 385, 392, 393, 416, 417, 424, 425, 512, 513, 520, 521, 544, 545, 552, 553, 640, 641, 648, 649, 672, 673, 680, 681, 768, 769, 776, 777, 800, 801, 808
Offset: 1
The terms together with their binary expansions and binary indices begin:
1: 1 ~ {1}
8: 1000 ~ {4}
9: 1001 ~ {1,4}
32: 100000 ~ {6}
33: 100001 ~ {1,6}
40: 101000 ~ {4,6}
41: 101001 ~ {1,4,6}
128: 10000000 ~ {8}
129: 10000001 ~ {1,8}
136: 10001000 ~ {4,8}
137: 10001001 ~ {1,4,8}
160: 10100000 ~ {6,8}
161: 10100001 ~ {1,6,8}
168: 10101000 ~ {4,6,8}
169: 10101001 ~ {1,4,6,8}
256: 100000000 ~ {9}
257: 100000001 ~ {1,9}
264: 100001000 ~ {4,9}
265: 100001001 ~ {1,4,9}
288: 100100000 ~ {6,9}
289: 100100001 ~ {1,6,9}
296: 100101000 ~ {4,6,9}
For powers of 2 instead of nonprime numbers we have
A253317.
For prime indices instead of binary indices we have
A320628.
For prime instead of nonprime we have
A326782.
For composite numbers we have
A371444.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[100],And@@Not/@PrimeQ/@bpe[#]&]
A371444
Numbers whose binary indices are composite numbers.
Original entry on oeis.org
8, 32, 40, 128, 136, 160, 168, 256, 264, 288, 296, 384, 392, 416, 424, 512, 520, 544, 552, 640, 648, 672, 680, 768, 776, 800, 808, 896, 904, 928, 936, 2048, 2056, 2080, 2088, 2176, 2184, 2208, 2216, 2304, 2312, 2336, 2344, 2432, 2440, 2464, 2472, 2560, 2568
Offset: 1
The terms together with their binary expansions and binary indices begin:
8: 1000 ~ {4}
32: 100000 ~ {6}
40: 101000 ~ {4,6}
128: 10000000 ~ {8}
136: 10001000 ~ {4,8}
160: 10100000 ~ {6,8}
168: 10101000 ~ {4,6,8}
256: 100000000 ~ {9}
264: 100001000 ~ {4,9}
288: 100100000 ~ {6,9}
296: 100101000 ~ {4,6,9}
384: 110000000 ~ {8,9}
392: 110001000 ~ {4,8,9}
416: 110100000 ~ {6,8,9}
424: 110101000 ~ {4,6,8,9}
512: 1000000000 ~ {10}
520: 1000001000 ~ {4,10}
544: 1000100000 ~ {6,10}
552: 1000101000 ~ {4,6,10}
640: 1010000000 ~ {8,10}
648: 1010001000 ~ {4,8,10}
672: 1010100000 ~ {6,8,10}
For powers of 2 instead of composite numbers we have
A253317.
For prime indices we have the even case of
A320628.
For prime instead of composite we have
A326782.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[100],EvenQ[#]&&And@@Not/@PrimeQ/@bpe[#]&]
A371453
Numbers whose binary indices are all squarefree semiprimes.
Original entry on oeis.org
32, 512, 544, 8192, 8224, 8704, 8736, 16384, 16416, 16896, 16928, 24576, 24608, 25088, 25120, 1048576, 1048608, 1049088, 1049120, 1056768, 1056800, 1057280, 1057312, 1064960, 1064992, 1065472, 1065504, 1073152, 1073184, 1073664, 1073696, 2097152, 2097184
Offset: 1
The terms together with their binary expansions and binary indices begin:
32: 100000 ~ {6}
512: 1000000000 ~ {10}
544: 1000100000 ~ {6,10}
8192: 10000000000000 ~ {14}
8224: 10000000100000 ~ {6,14}
8704: 10001000000000 ~ {10,14}
8736: 10001000100000 ~ {6,10,14}
16384: 100000000000000 ~ {15}
16416: 100000000100000 ~ {6,15}
16896: 100001000000000 ~ {10,15}
16928: 100001000100000 ~ {6,10,15}
24576: 110000000000000 ~ {14,15}
24608: 110000000100000 ~ {6,14,15}
25088: 110001000000000 ~ {10,14,15}
25120: 110001000100000 ~ {6,10,14,15}
1048576: 100000000000000000000 ~ {21}
Partitions of this type are counted by
A002100, squarefree case of
A101048.
For primes instead of squarefree semiprimes we get
A326782.
Allowing any squarefree numbers gives
A368533.
This is the squarefree case of
A371454.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
-
M:= 26: # for terms < 2^M
P:= select(isprime, [$2..(M+1)/2]): nP:= nops(P):
S:= select(`<`,{seq(seq(P[i]*P[j],i=1..j-1),j=1..nP)},M+1):
R:= map(proc(s) local i; add(2^(i-1),i=s) end proc, combinat:-powerset(S) minus {{}}):
sort(convert(R,list)); # Robert Israel, Apr 04 2024
-
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
sqfsemi[n_]:=SquareFreeQ[n]&&PrimeOmega[n]==2;
Select[Range[10000],And@@sqfsemi/@bix[#]&]
-
def A371453(n): return sum(1<<A006881(i)-1 for i, j in enumerate(bin(n)[:1:-1],1) if j=='1')
-
from math import isqrt
from sympy import primepi, primerange
def A371453(n):
def f(x,n): return int(n+x+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
def A006881(n):
m, k = n, f(n,n)
while m != k:
m, k = k, f(k,n)
return m
return sum(1<<A006881(i)-1 for i, j in enumerate(bin(n)[:1:-1],1) if j=='1') # Chai Wah Wu, Aug 16 2024
A371454
Numbers whose binary indices are all semiprimes.
Original entry on oeis.org
8, 32, 40, 256, 264, 288, 296, 512, 520, 544, 552, 768, 776, 800, 808, 8192, 8200, 8224, 8232, 8448, 8456, 8480, 8488, 8704, 8712, 8736, 8744, 8960, 8968, 8992, 9000, 16384, 16392, 16416, 16424, 16640, 16648, 16672, 16680, 16896, 16904, 16928, 16936, 17152
Offset: 1
The terms together with their binary expansions and binary indices begin:
8: 1000 ~ {4}
32: 100000 ~ {6}
40: 101000 ~ {4,6}
256: 100000000 ~ {9}
264: 100001000 ~ {4,9}
288: 100100000 ~ {6,9}
296: 100101000 ~ {4,6,9}
512: 1000000000 ~ {10}
520: 1000001000 ~ {4,10}
544: 1000100000 ~ {6,10}
552: 1000101000 ~ {4,6,10}
768: 1100000000 ~ {9,10}
776: 1100001000 ~ {4,9,10}
800: 1100100000 ~ {6,9,10}
808: 1100101000 ~ {4,6,9,10}
Partitions of this type are counted by
A101048, squarefree case
A002100.
For primes instead of semiprimes we get
A326782.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
-
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
semi[n_]:=PrimeOmega[n]==2;
Select[Range[10000],And@@semi/@bix[#]&]
-
from math import isqrt
from sympy import primepi, primerange
def A371454(n):
def f(x,n): return int(n+x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
def A001358(n):
m, k = n, f(n,n)
while m != k:
m, k = k, f(k,n)
return m
return sum(1<<A001358(i)-1 for i, j in enumerate(bin(n)[:1:-1],1) if j=='1') # Chai Wah Wu, Aug 16 2024
A371290
Numbers whose product of binary indices is a prime power > 1.
Original entry on oeis.org
1, 2, 3, 4, 5, 8, 9, 10, 11, 16, 17, 64, 65, 128, 129, 130, 131, 136, 137, 138, 139, 256, 257, 260, 261, 1024, 1025, 4096, 4097, 32768, 32769, 32770, 32771, 32776, 32777, 32778, 32779, 32896, 32897, 32898, 32899, 32904, 32905, 32906, 32907, 65536, 65537, 262144
Offset: 1
The terms together with their binary expansions and binary indices begin:
1: 1 ~ {1}
2: 10 ~ {2}
3: 11 ~ {1,2}
4: 100 ~ {3}
5: 101 ~ {1,3}
8: 1000 ~ {4}
9: 1001 ~ {1,4}
10: 1010 ~ {2,4}
11: 1011 ~ {1,2,4}
16: 10000 ~ {5}
17: 10001 ~ {1,5}
64: 1000000 ~ {7}
65: 1000001 ~ {1,7}
128: 10000000 ~ {8}
129: 10000001 ~ {1,8}
130: 10000010 ~ {2,8}
131: 10000011 ~ {1,2,8}
136: 10001000 ~ {4,8}
137: 10001001 ~ {1,4,8}
138: 10001010 ~ {2,4,8}
139: 10001011 ~ {1,2,4,8}
256: 100000000 ~ {9}
257: 100000001 ~ {1,9}
260: 100000100 ~ {3,9}
261: 100000101 ~ {1,3,9}
1024: 10000000000 ~ {11}
1025: 10000000001 ~ {1,11}
4096: 1000000000000 ~ {13}
4097: 1000000000001 ~ {1,13}
32768: 1000000000000000 ~ {16}
For squarefree numbers instead of prime powers we have
A371289.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[1000],#==1||PrimePowerQ[Times@@bpe[#]]&]
A368603
Products of odd primes of squarefree index. MM-numbers of set multipartitions.
Original entry on oeis.org
1, 3, 5, 9, 11, 13, 15, 17, 25, 27, 29, 31, 33, 39, 41, 43, 45, 47, 51, 55, 59, 65, 67, 73, 75, 79, 81, 83, 85, 87, 93, 99, 101, 109, 113, 117, 121, 123, 125, 127, 129, 135, 137, 139, 141, 143, 145, 149, 153, 155, 157, 163, 165, 167, 169, 177, 179, 181, 187
Offset: 1
The terms together with the corresponding set multipartitions begin:
1: {}
3: {{1}}
5: {{2}}
9: {{1},{1}}
11: {{3}}
13: {{1,2}}
15: {{1},{2}}
17: {{4}}
25: {{2},{2}}
27: {{1},{1},{1}}
29: {{1,3}}
31: {{5}}
33: {{1},{3}}
39: {{1},{1,2}}
41: {{6}}
43: {{1,4}}
45: {{1},{1},{2}}
A050320 counts set multipartitions of prime indices.
A089259 counts set multipartitions of integer partitions.
A116540 counts set multipartitions covering an initial interval by weight.
A368533 lists numbers with squarefree binary indices.
Cf.
A000040,
A000720,
A001222,
A005117,
A006450,
A076610,
A270995,
A296119,
A302242,
A302590,
A339113.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],OddQ[#]&&And@@SquareFreeQ/@prix[#]&]
Showing 1-8 of 8 results.
Comments