A328714 Constant term in the expansion of (1 + w + x + y + z + 1/w + 1/x + 1/y + 1/z)^n.
1, 1, 9, 25, 217, 921, 7761, 41889, 345465, 2162617, 17605249, 121120209, 980612161, 7174425025, 58079091513, 442755733065, 3595708057785, 28197440412345, 230133477721665, 1841288167473105, 15113407062476817, 122714906949538257, 1013127345082389513
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1054
Programs
-
PARI
{a(n) = polcoef(polcoef(polcoef(polcoef((1+w+x+y+z+1/w+1/x+1/y+1/z)^n, 0), 0), 0), 0)}
Formula
From Vaclav Kotesovec, Oct 26 2019: (Start)
Recurrence: n^4*a(n) = (5*n^4 - 10*n^3 + 10*n^2 - 5*n + 1)*a(n-1) + (n-1)^2*(70*n^2 - 140*n + 113)*a(n-2) - (n-2)*(n-1)*(230*n^2 - 690*n + 583)*a(n-3) - 789*(n-3)*(n-2)^2*(n-1)*a(n-4) + 945*(n-4)*(n-3)*(n-2)*(n-1)*a(n-5).
a(n) ~ 9^(n+2) / (16 * Pi^2 * n^2). (End)
E.g.f.: exp(x) * BesselI(0,2*x)^4. - Ilya Gutkovskiy, Oct 26 2019
Extensions
a(19)-a(22) from Alois P. Heinz, Oct 26 2019
Comments