cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A328718 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) is the constant term in the expansion of (1 + x_1 + x_2 + ... + x_n + 1/x_1 + 1/x_2 + ... + 1/x_n)^k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 5, 1, 1, 1, 19, 13, 7, 1, 1, 1, 51, 61, 19, 9, 1, 1, 1, 141, 221, 127, 25, 11, 1, 1, 1, 393, 1001, 511, 217, 31, 13, 1, 1, 1, 1107, 4145, 3301, 921, 331, 37, 15, 1, 1, 1, 3139, 18733, 16297, 7761, 1451, 469, 43, 17, 1, 1
Offset: 0

Views

Author

Seiichi Manyama, Oct 26 2019

Keywords

Comments

T(n,k) is the number of k-step closed walks (from origin to origin) in n-dimensional lattice where each step changes at most one component by -1 or by +1. - Alois P. Heinz, Oct 26 2019
Conjecture: Row r is asymptotic to (2*r+1)^(n + r/2) / (2^r * (Pi*n)^(r/2)). - Vaclav Kotesovec, Oct 27 2019

Examples

			Square array begins:
   1, 1,  1,  1,   1,    1,     1,      1, ...
   1, 1,  3,  7,  19,   51,   141,    393, ...
   1, 1,  5, 13,  61,  221,  1001,   4145, ...
   1, 1,  7, 19, 127,  511,  3301,  16297, ...
   1, 1,  9, 25, 217,  921,  7761,  41889, ...
   1, 1, 11, 31, 331, 1451, 15101,  85961, ...
   1, 1, 13, 37, 469, 2101, 26041, 153553, ...
		

Crossrefs

Main diagonal is A328716.

Formula

From Vaclav Kotesovec, Oct 30 2019: (Start)
Columns:
T(n,2) = 2*n + 1.
T(n,3) = 6*n + 1.
T(n,4) = 12*n^2 + 6*n + 1.
T(n,5) = 60*n^2 - 10*n + 1.
T(n,6) = 120*n^3 + 20*n + 1.
T(n,7) = 840*n^3 - 840*n^2 + 392*n + 1. (End)

A342964 Constant term in the expansion of ( (Sum_{j=0..n} x^(2*j+1)+1/x^(2*j+1)) * (Sum_{j=0..n} y^(2*j+1)+1/y^(2*j+1)) - (Sum_{j=0..n-1} x^(2*j+1)+1/x^(2*j+1)) * (Sum_{j=0..n-1} y^(2*j+1)+1/y^(2*j+1)) )^(2*n).

Original entry on oeis.org

1, 12, 2100, 1751680, 4190017860, 20874801722544, 177661172742061008, 2295966445175463883680, 41848194615009705993547620, 1022849138778659709119846990032, 32304962696573489860535097887683296
Offset: 0

Views

Author

Seiichi Manyama, Mar 31 2021

Keywords

Comments

Number of (2*n)-step closed paths (from origin to origin) in 2-dimensional lattice, using steps (t_1,t_2) (|t_1| + |t_2| = 2*n+1).
Constant term in the expansion of (Sum_{j=0..2*n+1} (x^j + 1/x^j)*(y^(2*n+1-j) + 1/y^(2*n+1-j)) - x^(2*n+1) - 1/x^(2*n+1) - y^(2*n+1) - 1/y^(2*n+1))^(2*n).

Crossrefs

Main diagonal of A329066.

Programs

  • PARI
    f(n) = (x^(2*n+2)-1/x^(2*n+2))/(x-1/x);
    a(n) = sum(j=0, 2*n, (-1)^j*binomial(2*n, j)*polcoef(f(n)^j*f(n-1)^(2*n-j), 0)^2);
Showing 1-2 of 2 results.