A329066
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) is the constant term in the expansion of ( (Sum_{j=0..n} x^(2*j+1)+1/x^(2*j+1)) * (Sum_{j=0..n} y^(2*j+1)+1/y^(2*j+1)) - (Sum_{j=0..n-1} x^(2*j+1)+1/x^(2*j+1)) * (Sum_{j=0..n-1} y^(2*j+1)+1/y^(2*j+1)) )^(2*k).
Original entry on oeis.org
1, 4, 1, 36, 12, 1, 400, 588, 20, 1, 4900, 49440, 2100, 28, 1, 63504, 5187980, 423440, 4956, 36, 1, 853776, 597027312, 117234740, 1751680, 9540, 44, 1, 11778624, 71962945824, 36938855520, 907687900, 5101200, 16236, 52, 1
Offset: 0
Square array begins:
1, 4, 36, 400, 4900, ...
1, 12, 588, 49440, 5187980, ...
1, 20, 2100, 423440, 117234740, ...
1, 28, 4956, 1751680, 907687900, ...
1, 36, 9540, 5101200, 4190017860, ...
-
{T(n, k) = polcoef(polcoef((sum(j=0, 2*n+1, (x^j+1/x^j)*(y^(2*n+1-j)+1/y^(2*n+1-j)))-x^(2*n+1)-1/x^(2*n+1)-y^(2*n+1)-1/y^(2*n+1))^(2*k), 0), 0)}
-
f(n) = (x^(2*n+2)-1/x^(2*n+2))/(x-1/x);
T(n, k) = sum(j=0, 2*k, (-1)^j*binomial(2*k, j)*polcoef(f(n)^j*f(n-1)^(2*k-j), 0)^2)
A328713
Constant term in the expansion of (1 + x + y + z + 1/x + 1/y + 1/z)^n.
Original entry on oeis.org
1, 1, 7, 19, 127, 511, 3301, 16297, 103279, 570367, 3595177, 21167917, 133789789, 818625133, 5207248879, 32649752779, 209258291599, 1333828204303, 8612806088761, 55546469634733, 361143420408337, 2349709451702737, 15370341546766939, 100695951740818903, 662213750028892429
Offset: 0
(1+x+y+z+1/x+1/y+1/z)^2 = x^2 + 1/x^2 + y^2 + 1/y^2 + z^2 + 1/z^2 + 2 * (xy + 1/(xy) + yz + 1/(yz) + zx + 1/(zx) + x/y + y/x + y/z + z/y + z/x + x/z + x + 1/x + y + 1/y + z + 1/z) + 7. So a(2) = 7.
A328716
Constant term in the expansion of (1 + x_1 + x_2 + ... + x_n + 1/x_1 + 1/x_2 + ... + 1/x_n)^n.
Original entry on oeis.org
1, 1, 5, 19, 217, 1451, 26041, 249705, 6116209, 76432627, 2373097921, 36562658573, 1374991573825, 25188442156333, 1112491608614933, 23620069750701091, 1198207214200181217, 28930659427538020915, 1657461085278025906081, 44848606508761385855085
Offset: 0
A327751
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) is the constant term in the expansion of (-1 + Product_{j=1..n} (1 + x_j + 1/x_j))^k.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 8, 0, 1, 0, 6, 24, 26, 0, 1, 0, 0, 216, 264, 80, 0, 1, 0, 20, 1200, 5646, 2160, 242, 0, 1, 0, 0, 8840, 101520, 121200, 16080, 728, 0, 1, 0, 70, 58800, 2103740, 6136800, 2410326, 115464, 2186, 0, 1
Offset: 0
Square array begins:
1, 0, 0, 0, 0, 0, ...
1, 0, 2, 0, 6, 0, ...
1, 0, 8, 24, 216, 1200, ...
1, 0, 26, 264, 5646, 101520, ...
1, 0, 80, 2160, 121200, 6136800, ...
1, 0, 242, 16080, 2410326, 332810400, ...
A328714
Constant term in the expansion of (1 + w + x + y + z + 1/w + 1/x + 1/y + 1/z)^n.
Original entry on oeis.org
1, 1, 9, 25, 217, 921, 7761, 41889, 345465, 2162617, 17605249, 121120209, 980612161, 7174425025, 58079091513, 442755733065, 3595708057785, 28197440412345, 230133477721665, 1841288167473105, 15113407062476817, 122714906949538257, 1013127345082389513
Offset: 0
-
{a(n) = polcoef(polcoef(polcoef(polcoef((1+w+x+y+z+1/w+1/x+1/y+1/z)^n, 0), 0), 0), 0)}
A328715
Constant term in the expansion of (1 + v + w + x + y + z + 1/v + 1/w + 1/x + 1/y + 1/z)^n.
Original entry on oeis.org
1, 1, 11, 31, 331, 1451, 15101, 85961, 876331, 5917531, 59415961, 450749861, 4481629021, 36869221741, 364723196891, 3177413896031, 31389891383531, 284948206851691, 2818704750978761, 26367817118386661, 261622144605718681, 2502704635436220281, 24932548891897186991
Offset: 0
-
{a(n) = polcoef(polcoef(polcoef(polcoef(polcoef((1+v+w+x+y+z+1/v+1/w+1/x+1/y+1/z)^n, 0), 0), 0), 0), 0)}
Showing 1-6 of 6 results.
Comments