cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A329066 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) is the constant term in the expansion of ( (Sum_{j=0..n} x^(2*j+1)+1/x^(2*j+1)) * (Sum_{j=0..n} y^(2*j+1)+1/y^(2*j+1)) - (Sum_{j=0..n-1} x^(2*j+1)+1/x^(2*j+1)) * (Sum_{j=0..n-1} y^(2*j+1)+1/y^(2*j+1)) )^(2*k).

Original entry on oeis.org

1, 4, 1, 36, 12, 1, 400, 588, 20, 1, 4900, 49440, 2100, 28, 1, 63504, 5187980, 423440, 4956, 36, 1, 853776, 597027312, 117234740, 1751680, 9540, 44, 1, 11778624, 71962945824, 36938855520, 907687900, 5101200, 16236, 52, 1
Offset: 0

Views

Author

Seiichi Manyama, Nov 03 2019

Keywords

Comments

T(n,k) is the number of (2*k)-step closed paths (from origin to origin) in 2-dimensional lattice, using steps (t_1,t_2) (|t_1| + |t_2| = 2*n+1).
T(n,k) is the constant term in the expansion of (Sum_{j=0..2*n+1} (x^j + 1/x^j)*(y^(2*n+1-j) + 1/y^(2*n+1-j)) - x^(2*n+1) - 1/x^(2*n+1) - y^(2*n+1) - 1/y^(2*n+1))^(2*k).

Examples

			Square array begins:
   1,  4,   36,     400,       4900, ...
   1, 12,  588,   49440,    5187980, ...
   1, 20, 2100,  423440,  117234740, ...
   1, 28, 4956, 1751680,  907687900, ...
   1, 36, 9540, 5101200, 4190017860, ...
		

Crossrefs

Columns k=0-1 give A000012, A017113.
Rows n=0-2 give A002894, A329024, A329067.
Main diagonal gives A342964.

Programs

  • PARI
    {T(n, k) = polcoef(polcoef((sum(j=0, 2*n+1, (x^j+1/x^j)*(y^(2*n+1-j)+1/y^(2*n+1-j)))-x^(2*n+1)-1/x^(2*n+1)-y^(2*n+1)-1/y^(2*n+1))^(2*k), 0), 0)}
    
  • PARI
    f(n) = (x^(2*n+2)-1/x^(2*n+2))/(x-1/x);
    T(n, k) = sum(j=0, 2*k, (-1)^j*binomial(2*k, j)*polcoef(f(n)^j*f(n-1)^(2*k-j), 0)^2)

Formula

See the second code written in PARI.

A328713 Constant term in the expansion of (1 + x + y + z + 1/x + 1/y + 1/z)^n.

Original entry on oeis.org

1, 1, 7, 19, 127, 511, 3301, 16297, 103279, 570367, 3595177, 21167917, 133789789, 818625133, 5207248879, 32649752779, 209258291599, 1333828204303, 8612806088761, 55546469634733, 361143420408337, 2349709451702737, 15370341546766939, 100695951740818903, 662213750028892429
Offset: 0

Views

Author

Seiichi Manyama, Oct 26 2019

Keywords

Comments

a(n) is the number of n-step closed walks (from origin to origin) in cubic lattice where each step changes at most one component by -1 or by +1. - Alois P. Heinz, Oct 26 2019

Examples

			(1+x+y+z+1/x+1/y+1/z)^2 = x^2 + 1/x^2 + y^2 + 1/y^2 + z^2 + 1/z^2 + 2 * (xy + 1/(xy) + yz + 1/(yz) + zx + 1/(zx) + x/y + y/x + y/z + z/y + z/x + x/z + x + 1/x + y + 1/y + z + 1/z) + 7. So a(2) = 7.
		

Crossrefs

Row 3 of A328718.

Programs

  • PARI
    {a(n) = polcoef(polcoef(polcoef((1+x+y+z+1/x+1/y+1/z)^n, 0), 0), 0)}

Formula

From Vaclav Kotesovec, Oct 26 2019: (Start)
Recurrence: n^3*a(n) = (2*n - 1)*(2*n^2 - 2*n + 1)*a(n-1) + (n-1)*(34*n^2 - 68*n + 41)*a(n-2) - 38*(n-2)*(n-1)*(2*n - 3)*a(n-3) - 105*(n-3)*(n-2)*(n-1)*a(n-4).
a(n) ~ 7^(n + 3/2) / (8 * Pi^(3/2) * n^(3/2)). (End)
E.g.f.: exp(x) * BesselI(0,2*x)^3. - Ilya Gutkovskiy, Oct 26 2019

A328716 Constant term in the expansion of (1 + x_1 + x_2 + ... + x_n + 1/x_1 + 1/x_2 + ... + 1/x_n)^n.

Original entry on oeis.org

1, 1, 5, 19, 217, 1451, 26041, 249705, 6116209, 76432627, 2373097921, 36562658573, 1374991573825, 25188442156333, 1112491608614933, 23620069750701091, 1198207214200181217, 28930659427538020915, 1657461085278025906081, 44848606508761385855085
Offset: 0

Views

Author

Seiichi Manyama, Oct 26 2019

Keywords

Comments

a(n) is the number of n-step closed walks (from origin to origin) in n-dimensional lattice where each step changes at most one component by -1 or by +1. - Alois P. Heinz, Oct 26 2019

Crossrefs

Main diagonal of A328718.

Formula

a(n) = n! * [x^n] exp(x) * BesselI(0,2*x)^n. - Ilya Gutkovskiy, Oct 26 2019
a(n) ~ c * d^n * n^n, where d = 0.8047104059195202206625458331930618795... and c = 2.12946224998808159475495497... if n is even and c = 1.4189559976544232606562785... if n is odd. - Vaclav Kotesovec, Oct 27 2019

Extensions

a(7)-a(19) from Alois P. Heinz, Oct 26 2019

A327751 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) is the constant term in the expansion of (-1 + Product_{j=1..n} (1 + x_j + 1/x_j))^k.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 8, 0, 1, 0, 6, 24, 26, 0, 1, 0, 0, 216, 264, 80, 0, 1, 0, 20, 1200, 5646, 2160, 242, 0, 1, 0, 0, 8840, 101520, 121200, 16080, 728, 0, 1, 0, 70, 58800, 2103740, 6136800, 2410326, 115464, 2186, 0, 1
Offset: 0

Views

Author

Seiichi Manyama, Oct 30 2019

Keywords

Comments

T(n,k) is the number of k-step closed walks (from origin to origin) in n-dimensional lattice, using steps (t_1,t_2, ... ,t_n) (t_j = -1, 1 or 0 for 1 <= j <= n) except for (0,0, ... ,0) (t_j = 0 for 1 <= j <= n).

Examples

			Square array begins:
   1, 0,   0,     0,       0,         0, ...
   1, 0,   2,     0,       6,         0, ...
   1, 0,   8,    24,     216,      1200, ...
   1, 0,  26,   264,    5646,    101520, ...
   1, 0,  80,  2160,  121200,   6136800, ...
   1, 0, 242, 16080, 2410326, 332810400, ...
		

Crossrefs

Columns k=0-3 give A000012, A000004, A024023, 24*A016212(n-2).
Rows n=0-4 give A000007, A126869, A094061, A328874, A328875.
Main diagonal is A326920.

Formula

T(n,k) = Sum_{j=0..k} (-1)^(k-j) * binomial(k,j) * A002426(j)^n.

A328714 Constant term in the expansion of (1 + w + x + y + z + 1/w + 1/x + 1/y + 1/z)^n.

Original entry on oeis.org

1, 1, 9, 25, 217, 921, 7761, 41889, 345465, 2162617, 17605249, 121120209, 980612161, 7174425025, 58079091513, 442755733065, 3595708057785, 28197440412345, 230133477721665, 1841288167473105, 15113407062476817, 122714906949538257, 1013127345082389513
Offset: 0

Views

Author

Seiichi Manyama, Oct 26 2019

Keywords

Comments

a(n) is the number of n-step closed walks (from origin to origin) in 4-dimensional lattice where each step changes at most one component by -1 or by +1. - Alois P. Heinz, Oct 26 2019

Crossrefs

Row 4 of A328718.
Cf. A039699.

Programs

  • PARI
    {a(n) = polcoef(polcoef(polcoef(polcoef((1+w+x+y+z+1/w+1/x+1/y+1/z)^n, 0), 0), 0), 0)}

Formula

From Vaclav Kotesovec, Oct 26 2019: (Start)
Recurrence: n^4*a(n) = (5*n^4 - 10*n^3 + 10*n^2 - 5*n + 1)*a(n-1) + (n-1)^2*(70*n^2 - 140*n + 113)*a(n-2) - (n-2)*(n-1)*(230*n^2 - 690*n + 583)*a(n-3) - 789*(n-3)*(n-2)^2*(n-1)*a(n-4) + 945*(n-4)*(n-3)*(n-2)*(n-1)*a(n-5).
a(n) ~ 9^(n+2) / (16 * Pi^2 * n^2). (End)
E.g.f.: exp(x) * BesselI(0,2*x)^4. - Ilya Gutkovskiy, Oct 26 2019

Extensions

a(19)-a(22) from Alois P. Heinz, Oct 26 2019

A328715 Constant term in the expansion of (1 + v + w + x + y + z + 1/v + 1/w + 1/x + 1/y + 1/z)^n.

Original entry on oeis.org

1, 1, 11, 31, 331, 1451, 15101, 85961, 876331, 5917531, 59415961, 450749861, 4481629021, 36869221741, 364723196891, 3177413896031, 31389891383531, 284948206851691, 2818704750978761, 26367817118386661, 261622144605718681, 2502704635436220281, 24932548891897186991
Offset: 0

Views

Author

Seiichi Manyama, Oct 26 2019

Keywords

Comments

a(n) is the number of n-step closed walks (from origin to origin) in 5-dimensional lattice where each step changes at most one component by -1 or by +1. - Alois P. Heinz, Oct 26 2019

Crossrefs

Row 5 of A328718.

Programs

  • PARI
    {a(n) = polcoef(polcoef(polcoef(polcoef(polcoef((1+v+w+x+y+z+1/v+1/w+1/x+1/y+1/z)^n, 0), 0), 0), 0), 0)}

Formula

E.g.f.: exp(x) * BesselI(0,2*x)^5. - Ilya Gutkovskiy, Oct 26 2019
From Vaclav Kotesovec, Oct 27 2019: (Start)
Recurrence: n^5*a(n) = (2*n - 1)*(n^2 - n + 1)*(3*n^2 - 3*n + 1)*a(n-1) + (n-1)*(125*n^4 - 500*n^3 + 903*n^2 - 806*n + 289)*a(n-2) - 2*(n-2)*(n-1)*(2*n - 3)*(135*n^2 - 405*n + 419)*a(n-3) - (n-3)*(n-2)*(n-1)*(3319*n^2 - 13276*n + 14637)*a(n-4) + 3867*(n-4)*(n-3)*(n-2)*(n-1)*(2*n - 5)*a(n-5) + 10395*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-6).
a(n) ~ 11^(n + 5/2) / (32 * Pi^(5/2) * n^(5/2)). (End)

Extensions

a(13)-a(22) from Alois P. Heinz, Oct 26 2019
Showing 1-6 of 6 results.