A328718 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) is the constant term in the expansion of (1 + x_1 + x_2 + ... + x_n + 1/x_1 + 1/x_2 + ... + 1/x_n)^k.
1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 5, 1, 1, 1, 19, 13, 7, 1, 1, 1, 51, 61, 19, 9, 1, 1, 1, 141, 221, 127, 25, 11, 1, 1, 1, 393, 1001, 511, 217, 31, 13, 1, 1, 1, 1107, 4145, 3301, 921, 331, 37, 15, 1, 1, 1, 3139, 18733, 16297, 7761, 1451, 469, 43, 17, 1, 1
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 3, 7, 19, 51, 141, 393, ... 1, 1, 5, 13, 61, 221, 1001, 4145, ... 1, 1, 7, 19, 127, 511, 3301, 16297, ... 1, 1, 9, 25, 217, 921, 7761, 41889, ... 1, 1, 11, 31, 331, 1451, 15101, 85961, ... 1, 1, 13, 37, 469, 2101, 26041, 153553, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
Crossrefs
Formula
From Vaclav Kotesovec, Oct 30 2019: (Start)
Columns:
T(n,2) = 2*n + 1.
T(n,3) = 6*n + 1.
T(n,4) = 12*n^2 + 6*n + 1.
T(n,5) = 60*n^2 - 10*n + 1.
T(n,6) = 120*n^3 + 20*n + 1.
T(n,7) = 840*n^3 - 840*n^2 + 392*n + 1. (End)
Comments