cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A328748 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) is Sum_{i=0..n} (-2)^(n-i)*binomial(n,i)*Sum_{j=0..i} binomial(i,j)^k.

Original entry on oeis.org

1, 1, 0, 1, 0, -1, 1, 0, 0, 2, 1, 0, 2, 0, -3, 1, 0, 6, 0, 0, 4, 1, 0, 14, 12, 6, 0, -5, 1, 0, 30, 72, 90, 0, 0, 6, 1, 0, 62, 300, 882, 360, 20, 0, -7, 1, 0, 126, 1080, 6690, 8400, 2040, 0, 0, 8, 1, 0, 254, 3612, 44706, 124920, 95180, 10080, 70, 0, -9
Offset: 0

Views

Author

Seiichi Manyama, Oct 27 2019

Keywords

Comments

T(n,k) is the constant term in the expansion of (-2 + Product_{j=1..k-1} (1 + x_j) + Product_{j=1..k-1} (1 + 1/x_j))^n for k > 0.

Examples

			Square array begins:
    1, 1, 1,   1,    1,      1, ...
    0, 0, 0,   0,    0,      0, ...
   -1, 0, 2,   6,   14,     30, ...
    2, 0, 0,  12,   72,    300, ...
   -3, 0, 6,  90,  882,   6690, ...
    4, 0, 0, 360, 8400, 124920, ...
		

Crossrefs

Columns k=0..5 give A097141(n+1), A000007, A126869, A002898, A328735, A328751.
T(n,n+1) gives A328814.

Programs

  • Mathematica
    T[n_, k_] := Sum[(-2)^(n-i) * Binomial[n, i] * Sum[Binomial[i, j]^k, {j, 0, i}], {i, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 06 2021 *)

A328808 Constant term in the expansion of (3 + x + y + z + 1/x + 1/y + 1/z + x*y + y*z + z*x + 1/(x*y) + 1/(y*z) + 1/(z*x) + x*y*z + 1/(x*y*z))^n.

Original entry on oeis.org

1, 3, 23, 225, 2583, 32133, 422069, 5757699, 80790775, 1158593589, 16905540753, 250185539079, 3746205581589, 56652844671855, 864032059578879, 13274539401672345, 205252378269637815, 3191578469685269925, 49876569284504593505, 782943268394316187815
Offset: 0

Views

Author

Seiichi Manyama, Oct 28 2019

Keywords

Crossrefs

Column k=4 of A328807.

Programs

  • Mathematica
    Table[Sum[Binomial[n, i]*Sum[Binomial[i, j]^4, {j, 0, i}], {i, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 28 2019 *)
  • PARI
    {a(n) = polcoef(polcoef(polcoef((1+(1+x)*(1+y)*(1+z)+(1+1/x)*(1+1/y)*(1+1/z))^n, 0), 0), 0)}
    
  • PARI
    {a(n) = sum(i=0, n, binomial(n, i)*sum(j=0, i, binomial(i, j)^4))}

Formula

a(n) = Sum_{i=0..n} binomial(n,i)*Sum_{j=0..i} binomial(i,j)^4.
From Vaclav Kotesovec, Oct 28 2019: (Start)
Recurrence: n^3*a(n) = (2*n - 1)*(8*n^2 - 8*n + 3)*a(n-1) + (n-1)*(22*n^2 - 44*n + 13)*a(n-2) - 44*(n-2)*(n-1)*(2*n - 3)*a(n-3) + 51*(n-3)*(n-2)*(n-1)*a(n-4).
a(n) ~ sqrt(2) * 17^(n + 3/2) / (64 * Pi^(3/2) * n^(3/2)). (End)
Showing 1-2 of 2 results.