cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A309010 Square array A(n, k) = Sum_{j=0..n} binomial(n,j)^k, n >= 0, k >= 0, read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 4, 4, 1, 2, 6, 8, 5, 1, 2, 10, 20, 16, 6, 1, 2, 18, 56, 70, 32, 7, 1, 2, 34, 164, 346, 252, 64, 8, 1, 2, 66, 488, 1810, 2252, 924, 128, 9, 1, 2, 130, 1460, 9826, 21252, 15184, 3432, 256, 10, 1, 2, 258, 4376, 54850, 206252, 263844, 104960, 12870, 512, 11
Offset: 0

Views

Author

Seiichi Manyama, Jul 06 2019

Keywords

Comments

A(n,k) is the constant term in the expansion of (Product_{j=1..k-1} (1 + x_j) + Product_{j=1..k-1} (1 + 1/x_j))^n for k > 0. - Seiichi Manyama, Oct 27 2019
Let B_k be the binomial poset containing all k-tuples of equinumerous subsets of {1,2,...} ordered by inclusion componentwise (described in Stanley reference below). Then A(k,n) is the number of elements in any n-interval of B_k. - Geoffrey Critzer, Apr 16 2020
Column k is the diagonal of the rational function 1 / (Product_{j=1..k} (1-x_j) - Product_{j=1..k} x_j) for k>0. - Seiichi Manyama, Jul 11 2020

Examples

			Square array, A(n, k), begins:
   1,  1,   1,    1,     1,      1, ... A000012;
   2,  2,   2,    2,     2,      2, ... A007395;
   3,  4,   6,   10,    18,     34, ... A052548;
   4,  8,  20,   56,   164,    488, ... A115099;
   5, 16,  70,  346,  1810,   9826, ...
   6, 32, 252, 2252, 21252, 206252, ...
Antidiagonals, T(n, k), begin:
  1;
  1,  2;
  1,  2,   3;
  1,  2,   4,    4;
  1,  2,   6,    8,    5;
  1,  2,  10,   20,   16,     6;
  1,  2,  18,   56,   70,    32,     7;
  1,  2,  34,  164,  346,   252,    64,    8;
  1,  2,  66,  488, 1810,  2252,   924,  128,   9;
  1,  2, 130, 1460, 9826, 21252, 15184, 3432, 256,  10;
		

References

  • R. P. Stanley, Enumerative Combinatorics Vol I, Second Edition, Cambridge, 2011, Example 3.18.3 d, page 366.

Crossrefs

Programs

  • Magma
    [(&+[Binomial(k,j)^(n-k): j in [0..k]]): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 26 2022
    
  • Mathematica
    nn = 8; Table[ek[x_] := Sum[x^n/n!^k, {n, 0, nn}];Range[0, nn]!^k CoefficientList[Series[ek[x]^2, {x, 0, nn}],x], {k, 0, nn}] // Transpose // Grid (* Geoffrey Critzer, Apr 17 2020 *)
  • PARI
    A(n, k) = sum(j=0, n, binomial(n, j)^k); \\ Seiichi Manyama, Jan 08 2022
    
  • SageMath
    flatten([[sum(binomial(k,j)^(n-k) for j in (0..k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Aug 26 2022

Formula

A(n, k) = Sum_{j=0..n} binomial(n,j)^k (array).
A(n, n+1) = A328812(n).
A(n, n) = A167010(n).
T(n, k) = A(k, n-k) (antidiagonals).
T(n, n) = A000027(n+1).
T(n, n-1) = A000079(n-1).
T(n, n-2) = A000984(n-2).
T(n, n-3) = A000172(n-3).
T(n, n-4) = A005260(n-4).
T(n, n-5) = A005261(n-5).
T(n, n-6) = A069865(n-6).
T(n, n-7) = A182421(n-7).
T(n, n-8) = A182422(n-8).
T(n, n-9) = A182446(n-9).
T(n, n-10) = A182447(n-10).
T(n, n-11) = A342294(n-11).
T(n, n-12) = A342295(n-12).
Sum_{n>=0} A(n,k) x^n/(n!^k) = (Sum_{n>=0} x^n/(n!^k))^2. - Geoffrey Critzer, Apr 17 2020

A328747 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) is Sum_{i=0..n} (-1)^(n-i)*binomial(n,i)*Sum_{j=0..i} binomial(i,j)^k.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 1, 0, 1, 1, 7, 7, 1, 0, 1, 1, 15, 31, 19, 1, 0, 1, 1, 31, 115, 175, 51, 1, 0, 1, 1, 63, 391, 1255, 991, 141, 1, 0, 1, 1, 127, 1267, 8071, 13671, 5881, 393, 1, 0, 1, 1, 255, 3991, 49399, 161671, 160461, 35617, 1107, 1, 0
Offset: 0

Views

Author

Seiichi Manyama, Oct 27 2019

Keywords

Comments

T(n,k) is the constant term in the expansion of (-1 + Product_{j=1..k-1} (1 + x_j) + Product_{j=1..k-1} (1 + 1/x_j))^n for k > 0.
For fixed k > 0, T(n,k) ~ (2^k - 1)^(n + (k-1)/2) / (2^((k-1)^2/2) * sqrt(k) * (Pi*n)^((k-1)/2)). - Vaclav Kotesovec, Oct 28 2019

Examples

			Square array begins:
   1, 1,  1,   1,     1,      1, ...
   1, 1,  1,   1,     1,      1, ...
   0, 1,  3,   7,    15,     31, ...
   0, 1,  7,  31,   115,    391, ...
   0, 1, 19, 175,  1255,   8071, ...
   0, 1, 51, 991, 13671, 161671, ...
		

Crossrefs

Columns k=0..5 give A019590(n+1), A000012, A002426, A172634, A328725, A328750.
Main diagonal gives A328811.
T(n,n+1) gives A328813.

Programs

  • Mathematica
    T[n_, k_] := Sum[(-1)^(n-i) * Binomial[n, i] * Sum[Binomial[i, j]^k, {j, 0, i}], {i, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 06 2021 *)

A328807 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) is Sum_{i=0..n} binomial(n,i)*Sum_{j=0..i} binomial(i,j)^k.

Original entry on oeis.org

1, 1, 3, 1, 3, 8, 1, 3, 9, 20, 1, 3, 11, 27, 48, 1, 3, 15, 45, 81, 112, 1, 3, 23, 93, 195, 243, 256, 1, 3, 39, 225, 639, 873, 729, 576, 1, 3, 71, 597, 2583, 4653, 3989, 2187, 1280, 1, 3, 135, 1665, 11991, 32133, 35169, 18483, 6561, 2816
Offset: 0

Views

Author

Seiichi Manyama, Oct 28 2019

Keywords

Comments

T(n,k) is the constant term in the expansion of (1 + Product_{j=1..k-1} (1 + x_j) + Product_{j=1..k-1} (1 + 1/x_j))^n for k > 0.
For fixed k > 0 is T(n,k) ~ (2^k + 1)^(n + (k-1)/2) / (2^((k-1)^2/2) * sqrt(k) * (Pi*n)^((k-1)/2)). - Vaclav Kotesovec, Oct 28 2019

Examples

			Square array begins:
     1,   1,   1,    1,     1,      1, ...
     3,   3,   3,    3,     3,      3, ...
     8,   9,  11,   15,    23,     39, ...
    20,  27,  45,   93,   225,    597, ...
    48,  81, 195,  639,  2583,  11991, ...
   112, 243, 873, 4653, 32133, 260613, ...
		

Crossrefs

Columns k=0..5 give A001792, A000244, A026375, A002893, A328808, A328809.
Main diagonal gives A328810.

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[n, i] * Sum[Binomial[i, j]^k, {j, 0, i}], {i, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 06 2021 *)

A328751 Constant term in the expansion of (-2 + (1 + w) * (1 + x) * (1 + y) * (1 + z) + (1 + 1/w) * (1 + 1/x) * (1 + 1/y) * (1 + 1/z))^n.

Original entry on oeis.org

1, 0, 30, 300, 6690, 124920, 2778600, 61790400, 1452751650, 34806097200, 855836532180, 21393889763400, 543342862524000, 13972938142363200, 363356617578926400, 9538720137580233600, 252510537115100657250, 6733792260826534332000, 180751978201192700659500
Offset: 0

Views

Author

Seiichi Manyama, Oct 27 2019

Keywords

Crossrefs

Column k=5 of A328748.

Programs

  • Mathematica
    Table[Sum[(-2)^(n-i)*Binomial[n,i] * Sum[Binomial[i,j]^5, {j,0,i}], {i,0,n}], {n,0,20}] (* Vaclav Kotesovec, Mar 20 2023 *)
  • PARI
    {a(n) = sum(i=0, n, (-2)^(n-i)*binomial(n, i)*sum(j=0, i, binomial(i, j)^5))}

Formula

a(n) = Sum_{i=0..n} (-2)^(n-i)*binomial(n,i)*Sum_{j=0..i} binomial(i,j)^5.
From Vaclav Kotesovec, Mar 20 2023: (Start)
Recurrence: n^4*(22*n^2 - 198*n + 323)*a(n) = (n-1)*(198*n^5 - 1980*n^4 + 4535*n^3 - 2641*n^2 + 119*n + 210)*a(n-1) + (11066*n^6 - 143858*n^5 + 628715*n^4 - 1298438*n^3 + 1394723*n^2 - 756728*n + 165060)*a(n-2) + 4*(n-2)*(19096*n^5 - 248248*n^4 + 1086158*n^3 - 2156993*n^2 + 2004912*n - 708435)*a(n-3) + 40*(n-3)*(n-2)*(5346*n^4 - 64152*n^3 + 242653*n^2 - 363566*n + 182959)*a(n-4) + 400*(n-4)*(n-3)*(n-2)*(682*n^3 - 6820*n^2 + 17955*n - 12432)*a(n-5) + 6000*(n-5)*(n-4)*(n-3)*(n-2)*(22*n^2 - 154*n + 147)*a(n-6).
a(n) ~ 2^(n-6) * 3^(n+2) * 5^(n + 3/2) / (Pi^2 * n^2). (End)

A328814 Constant term in the expansion of (-2 + Product_{k=1..n} (1 + x_k) + Product_{k=1..n} (1 + 1/x_k))^n.

Original entry on oeis.org

1, 0, 6, 72, 6690, 1536000, 1398496680, 4165565871600, 48724656010825410, 1991141239554487077120, 325362786100184356140612996, 190695111051826003327799496771600, 452459020719698368348441955010421696800
Offset: 0

Views

Author

Seiichi Manyama, Oct 28 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-2)^(n-i) * Binomial[n, i] * Sum[Binomial[i, j]^(n+1), {j, 0, i}], {i, 0, n}]; Array[a, 13, 0] (* Amiram Eldar, May 06 2021 *)
  • PARI
    {a(n) = sum(i=0, n, (-2)^(n-i)*binomial(n, i)*sum(j=0, i, binomial(i, j)^(n+1)))}

Formula

a(n) = A328748(n,n+1) = Sum_{i=0..n} (-2)^(n-i)*binomial(n,i)*Sum_{j=0..i} binomial(i,j)^(n+1).

A328735 Constant term in the expansion of (x + y + z + 1/x + 1/y + 1/z + x*y + y*z + z*x + 1/(x*y) + 1/(y*z) + 1/(z*x) + x*y*z + 1/(x*y*z))^n.

Original entry on oeis.org

1, 0, 14, 72, 882, 8400, 95180, 1060080, 12389650, 146472480, 1767391164, 21581516880, 266718438756, 3327025429728, 41849031952728, 530135326392672, 6757845419895570, 86619827323917888, 1115719258312182524, 14434274832755201424, 187477238295444829732
Offset: 0

Views

Author

Seiichi Manyama, Oct 26 2019

Keywords

Crossrefs

Column k=4 of A328748.
Sum_{i=0..n} (-2)^(n-i)*binomial(n,i)*Sum_{j=0..i} binomial(i,j)^m: A126869 (m=2), A002898 (m=3), this sequence (m=4), A328751 (m=5).

Programs

  • Mathematica
    Table[Sum[(-2)^(n-i)*Binomial[n,i] * Sum[Binomial[i,j]^4, {j,0,i}], {i,0,n}], {n,0,20}] (* Vaclav Kotesovec, Mar 20 2023 *)
  • PARI
    {a(n) = polcoef(polcoef(polcoef((-2+(1+x)*(1+y)*(1+z)+(1+1/x)*(1+1/y)*(1+1/z))^n, 0), 0), 0)}
    
  • PARI
    {a(n) = sum(i=0, n, (-2)^(n-i)*binomial(n, i)*sum(j=0, i, binomial(i, j)^4))}

Formula

a(n) = Sum_{i=0..n} (-2)^(n-i)*binomial(n,i)*Sum_{j=0..i} binomial(i,j)^4.
From Vaclav Kotesovec, Mar 20 2023: (Start)
Recurrence: n^3*a(n) = 2*(n-1)*n*(2*n - 1)*a(n-1) + 112*(n-1)^3*a(n-2) + 184*(n-2)*(n-1)*(2*n - 3)*a(n-3) + 336*(n-3)*(n-2)*(n-1)*a(n-4).
a(n) ~ 2^(n-4) * 7^(n + 3/2) / (Pi^(3/2) * n^(3/2)). (End)
Showing 1-6 of 6 results.