A328574 a(1) = 0, and, for n >= 2, numbers n whose primorial base expansion doesn't contain any nonleading zeros.
0, 1, 3, 5, 9, 11, 15, 17, 21, 23, 27, 29, 39, 41, 45, 47, 51, 53, 57, 59, 69, 71, 75, 77, 81, 83, 87, 89, 99, 101, 105, 107, 111, 113, 117, 119, 129, 131, 135, 137, 141, 143, 147, 149, 159, 161, 165, 167, 171, 173, 177, 179, 189, 191, 195, 197, 201, 203, 207, 209, 249, 251, 255, 257, 261, 263, 267, 269, 279, 281, 285
Offset: 1
Links
Crossrefs
Programs
-
Mathematica
max = 4; bases = Prime @ Range[max, 1, -1]; nmax = Times @@ bases - 1; Join[{0}, Select[Range[nmax], FreeQ[IntegerDigits[#, MixedRadix[bases]], 0] &]] (* Amiram Eldar, Feb 16 2021 *)
-
PARI
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; isA055932(n) = { my(f=factor(n)[, 1]~); f==primes(#f); }; \\ From A055932 isA328574(n) = isA055932(A276086(n));
-
PARI
A328475(n) = { my(m=1, p=2, y=1); while(n, if(n%p, m *= p^((n%p)-y), y=0); n = n\p; p = nextprime(1+p)); (m); }; A328572(n) = { my(m=1, p=2); while(n, if(n%p, m *= p^((n%p)-1)); n = n\p; p = nextprime(1+p)); (m); }; isA328574(n) = (A328475(n) == A328572(n));
Extensions
Primary definition changed, the old definition moved to comment section by Antti Karttunen, Nov 03 2019
Comments