cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A276086 Primorial base exp-function: digits in primorial base representation of n become the exponents of successive prime factors whose product a(n) is.

Original entry on oeis.org

1, 2, 3, 6, 9, 18, 5, 10, 15, 30, 45, 90, 25, 50, 75, 150, 225, 450, 125, 250, 375, 750, 1125, 2250, 625, 1250, 1875, 3750, 5625, 11250, 7, 14, 21, 42, 63, 126, 35, 70, 105, 210, 315, 630, 175, 350, 525, 1050, 1575, 3150, 875, 1750, 2625, 5250, 7875, 15750, 4375, 8750, 13125, 26250, 39375, 78750, 49, 98, 147, 294, 441, 882, 245, 490, 735, 1470, 2205, 4410, 1225, 2450
Offset: 0

Views

Author

Antti Karttunen, Aug 21 2016

Keywords

Comments

Prime product form of primorial base expansion of n.
Sequence is a permutation of A048103. It maps the smallest prime not dividing n to the smallest prime dividing n, that is, A020639(a(n)) = A053669(n) holds for all n >= 1.
The sequence satisfies the exponential function identity, a(x + y) = a(x) * a(y), whenever A329041(x,y) = 1, that is, when adding x and y together will not generate any carries in the primorial base. Examples of such pairs of x and y are A328841(n) & A328842(n), and also A328770(n) (when added with itself). - Antti Karttunen, Oct 31 2019
From Antti Karttunen, Feb 18 2022: (Start)
The conjecture given in A327969 asks whether applying this function together with the arithmetic derivative (A003415) in some combination or another can eventually transform every positive integer into zero.
Another related open question asks whether there are any other numbers than n=6 such that when starting from that n and by iterating with A003415, one eventually reaches a(n). See comments in A351088.
This sequence is used in A351255 to list the terms of A099308 in a different order, by the increasing exponents of the successive primes in their prime factorization. (End)
From Bill McEachen, Oct 15 2022: (Start)
From inspection, the least significant decimal digits of a(n) terms form continuous chains of 30 as follows. For n == i (mod 30), i=0..5, there are 6 ordered elements of these 8 {1,2,3,6,9,8,7,4}. Then for n == i (mod 30), i=6..29, there are 12 repeated pairs = {5,0}.
Moreover, when the individual elements of any of the possible groups of 6 are transformed via (7*digit) (mod 10), the result matches one of the other 7 groupings (not all 7 may be seen). As example, {1,2,3,6,9,8} transforms to {7,4,1,2,3,6}. (End)
The least significant digit of a(n) in base 4 is given by A353486, and in base 6 by A358840. - Antti Karttunen, Oct 25 2022, Feb 17 2024

Examples

			For n = 24, which has primorial base representation (see A049345) "400" as 24 = 4*A002110(2) + 0*A002110(1) + 0*A002110(0) = 4*6 + 0*2 + 0*1, thus a(24) = prime(3)^4 * prime(2)^0 * prime(1)^0 = 5^4 = 625.
For n = 35 = "1021" as 35 = 1*A002110(3) + 0*A002110(2) + 2*A002110(1) + 1*A002110(0) = 1*30 + 0*6 + 2*2 + 1*1, thus a(35) = prime(4)^1 * prime(2)^2 * prime(1) = 7 * 3*3 * 2 = 126.
		

Crossrefs

Cf. A276085 (a left inverse) and also A276087, A328403.
Cf. A048103 (terms sorted into ascending order), A100716 (natural numbers not present in this sequence).
Cf. A278226 (associated filter-sequence), A286626 (and its rgs-version), A328477.
Cf. A328316 (iterates started from zero).
Cf. A327858, A327859, A327860, A327963, A328097, A328098, A328099, A328110, A328112, A328382 for various combinations with arithmetic derivative (A003415).
Cf. also A327167, A329037.
Cf. A019565 and A054842 for base-2 and base-10 analogs and A276076 for the analogous "factorial base exp-function", from which this differs for the first time at n=24, where a(24)=625 while A276076(24)=7.
Cf. A327969, A351088, A351458 for sequences with conjectures involving this sequence.

Programs

  • Mathematica
    b = MixedRadix[Reverse@ Prime@ Range@ 12]; Table[Function[k, Times @@ Power @@@ # &@ Transpose@ {Prime@ Range@ Length@ k, Reverse@ k}]@ IntegerDigits[n, b], {n, 0, 51}] (* Michael De Vlieger, Aug 23 2016, Version 10.2 *)
    f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Prime@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Prime@ Range[# + 1] <= n &]; Rest[a][[All, 1]]]; Table[Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &, Reverse@ f@ n], {n, 0, 73}] (* Michael De Vlieger, Aug 30 2016, Pre-Version 10 *)
    a[n0_] := Module[{m = 1, i = 1, n = n0, p}, While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; m];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 01 2021, after Antti Karttunen's Sage code *)
  • PARI
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; }; \\ Antti Karttunen, May 12 2017
    
  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; \\ (Better than above one, avoids unnecessary construction of primorials). - Antti Karttunen, Oct 14 2019
    
  • Python
    from sympy import prime
    def a(n):
        i=0
        m=pr=1
        while n>0:
            i+=1
            N=prime(i)*pr
            if n%N!=0:
                m*=(prime(i)**((n%N)/pr))
                n-=n%N
            pr=N
        return m # Indranil Ghosh, May 12 2017, after Antti Karttunen's PARI code
    
  • Python
    from sympy import nextprime
    def a(n):
        m, p = 1, 2
        while n > 0:
            n, r = divmod(n, p)
            m *= p**r
            p = nextprime(p)
        return m
    print([a(n) for n in range(74)])  # Peter Luschny, Apr 20 2024
  • Sage
    def A276086(n):
        m=1
        i=1
        while n>0:
            p = sloane.A000040(i)
            m *= (p**(n%p))
            n = floor(n/p)
            i += 1
        return (m)
    # Antti Karttunen, Oct 14 2019, after Indranil Ghosh's Python code above, and my own leaner PARI code from Oct 14 2019. This avoids unnecessary construction of primorials.
    
  • Scheme
    (define (A276086 n) (let loop ((n n) (t 1) (i 1)) (if (zero? n) t (let* ((p (A000040 i)) (d (modulo n p))) (loop (/ (- n d) p) (* t (expt p d)) (+ 1 i))))))
    
  • Scheme
    (definec (A276086 n) (if (zero? n) 1 (* (expt (A053669 n) (A276088 n)) (A276086 (A276093 n))))) ;; Needs macro definec from http://oeis.org/wiki/Memoization#Scheme
    
  • Scheme
    (definec (A276086 n) (if (zero? n) 1 (* (A053669 n) (A276086 (- n (A002110 (A276084 n))))))) ;; Needs macro definec from http://oeis.org/wiki/Memoization#Scheme
    

Formula

a(0) = 1; for n >= 1, a(n) = A053669(n) * a(A276151(n)) = A053669(n) * a(n-A002110(A276084(n))).
a(0) = 1; for n >= 1, a(n) = A053669(n)^A276088(n) * a(A276093(n)).
a(n) = A328841(a(n)) + A328842(a(n)) = A328843(n) + A328844(n).
a(n) = a(A328841(n)) * a(A328842(n)) = A328571(n) * A328572(n).
a(n) = A328475(n) * A328580(n) = A328476(n) + A328580(n).
a(A002110(n)) = A000040(n+1). [Maps primorials to primes]
a(A143293(n)) = A002110(n+1). [Maps partial sums of primorials to primorials]
a(A057588(n)) = A276092(n).
a(A276156(n)) = A019565(n).
a(A283477(n)) = A324289(n).
a(A003415(n)) = A327859(n).
Here the text in brackets shows how the right hand side sequence is a function of the primorial base expansion of n:
A001221(a(n)) = A267263(n). [Number of nonzero digits]
A001222(a(n)) = A276150(n). [Sum of digits]
A067029(a(n)) = A276088(n). [The least significant nonzero digit]
A071178(a(n)) = A276153(n). [The most significant digit]
A061395(a(n)) = A235224(n). [Number of significant digits]
A051903(a(n)) = A328114(n). [Largest digit]
A055396(a(n)) = A257993(n). [Number of trailing zeros + 1]
A257993(a(n)) = A328570(n). [Index of the least significant zero digit]
A079067(a(n)) = A328620(n). [Number of nonleading zeros]
A056169(a(n)) = A328614(n). [Number of 1-digits]
A056170(a(n)) = A328615(n). [Number of digits larger than 1]
A277885(a(n)) = A328828(n). [Index of the least significant digit > 1]
A134193(a(n)) = A329028(n). [The least missing nonzero digit]
A005361(a(n)) = A328581(n). [Product of nonzero digits]
A072411(a(n)) = A328582(n). [LCM of nonzero digits]
A001055(a(n)) = A317836(n). [Number of carry-free partitions of n in primorial base]
Various number theoretical functions applied:
A000005(a(n)) = A324655(n). [Number of divisors of a(n)]
A000203(a(n)) = A324653(n). [Sum of divisors of a(n)]
A000010(a(n)) = A324650(n). [Euler phi applied to a(n)]
A023900(a(n)) = A328583(n). [Dirichlet inverse of Euler phi applied to a(n)]
A069359(a(n)) = A329029(n). [Sum a(n)/p over primes p dividing a(n)]
A003415(a(n)) = A327860(n). [Arithmetic derivative of a(n)]
Other identities:
A276085(a(n)) = n. [A276085 is a left inverse]
A020639(a(n)) = A053669(n). [The smallest prime not dividing n -> the smallest prime dividing n]
A046523(a(n)) = A278226(n). [Least number with the same prime signature as a(n)]
A246277(a(n)) = A329038(n).
A181819(a(n)) = A328835(n).
A053669(a(n)) = A326810(n), A326810(a(n)) = A328579(n).
A257993(a(n)) = A328570(n), A328570(a(n)) = A328578(n).
A328613(a(n)) = A328763(n), A328620(a(n)) = A328766(n).
A328828(a(n)) = A328829(n).
A053589(a(n)) = A328580(n). [Greatest primorial number which divides a(n)]
A276151(a(n)) = A328476(n). [... and that primorial subtracted from a(n)]
A111701(a(n)) = A328475(n).
A328114(a(n)) = A328389(n). [Greatest digit of primorial base expansion of a(n)]
A328389(a(n)) = A328394(n), A328394(a(n)) = A328398(n).
A235224(a(n)) = A328404(n), A328405(a(n)) = A328406(n).
a(A328625(n)) = A328624(n), a(A328626(n)) = A328627(n). ["Twisted" variants]
a(A108951(n)) = A324886(n).
a(n) mod n = A328386(n).
a(a(n)) = A276087(n), a(a(a(n))) = A328403(n). [2- and 3-fold applications]
a(2n+1) = 2 * a(2n). - Antti Karttunen, Feb 17 2022

Extensions

Name edited and new link-formulas added by Antti Karttunen, Oct 29 2019
Name changed again by Antti Karttunen, Feb 05 2022

A328840 Numbers with no digit 1 in their primorial base expansion (A049345).

Original entry on oeis.org

0, 4, 12, 16, 18, 22, 24, 28, 60, 64, 72, 76, 78, 82, 84, 88, 90, 94, 102, 106, 108, 112, 114, 118, 120, 124, 132, 136, 138, 142, 144, 148, 150, 154, 162, 166, 168, 172, 174, 178, 180, 184, 192, 196, 198, 202, 204, 208, 420, 424, 432, 436, 438, 442, 444, 448, 480, 484, 492, 496, 498, 502, 504, 508, 510, 514, 522, 526
Offset: 1

Views

Author

Antti Karttunen, Nov 07 2019

Keywords

Comments

Numbers for which the least missing nonzero digit (A329028) in their primorial base expansion is 1.

Crossrefs

Cf. A049345.
Positions of ones in A329028.
Cf. also A328574 and A329027.
Cf. A255411 for an analogous sequence.

Programs

  • Mathematica
    q[n_] := Module[{k = n, p = 2, s = {}, r}, While[{k, r} = QuotientRemainder[k, p]; k != 0 || r != 0, AppendTo[s, r]; p = NextPrime[p]]; FreeQ[s, 1]]; Select[Range[0, 600], q] (* Amiram Eldar, Mar 06 2024 *)
  • PARI
    A329028(n) = { my(m=Map(), p=2); while(n, mapput(m,(n%p),1); n = n\p; p = nextprime(1+p)); for(k=1,oo,if(!mapisdefined(m,k),return(k))); };
    isA328840(n) = (1 == A329028(n));

A329027 The least missing digit in the primorial base expansion of n. Only significant digits are considered, as the leading zeros are ignored.

Original entry on oeis.org

0, 2, 0, 1, 0, 2, 2, 2, 0, 3, 0, 1, 3, 3, 0, 1, 0, 1, 2, 2, 0, 1, 0, 1, 2, 2, 0, 1, 0, 2, 2, 2, 2, 3, 3, 2, 2, 2, 0, 3, 0, 3, 3, 3, 0, 3, 0, 2, 2, 2, 0, 4, 0, 2, 2, 2, 0, 3, 0, 1, 3, 3, 3, 1, 3, 3, 3, 3, 0, 3, 0, 1, 3, 3, 0, 1, 0, 1, 4, 4, 0, 1, 0, 1, 3, 3, 0, 1, 0, 1, 2, 2, 2, 1, 4, 2, 2, 2, 0, 4, 0, 1, 4, 4, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 03 2019

Keywords

Comments

For n = 0 the value is ambiguous, thus the sequence starts from n=1.

Examples

			19 in primorial base (A049345) is written as "301". The least missing digit is 2, thus a(19) = 2.
		

Crossrefs

Cf. A328574 (after its initial term, gives the positions of zeros in this sequence), A328840 (after its initial term, gives the positions of ones in this sequence).

Programs

  • Mathematica
    a[n_] := Module[{k = n, p = 2, s = {}, r}, While[{k, r} = QuotientRemainder[k, p]; k != 0 || r != 0, AppendTo[s, r]; p = NextPrime[p]]; Min[Complement[Range[0, Max[s]+1], s]]]; Array[a, 100] (* Amiram Eldar, Mar 13 2024 *)
  • PARI
    A329027(n) = { my(m=Map(), p=2); while(n, mapput(m,(n%p),1); n = n\p; p = nextprime(1+p)); for(k=0,oo,if(!mapisdefined(m,k),return(k))); };

A329030 The least missing nonzero digit in the primorial base expansion of A276086(n).

Original entry on oeis.org

2, 2, 2, 2, 2, 1, 3, 3, 3, 2, 3, 1, 2, 2, 3, 1, 3, 3, 3, 3, 3, 1, 3, 1, 3, 2, 3, 2, 3, 1, 2, 3, 2, 3, 3, 2, 3, 3, 4, 2, 4, 1, 2, 2, 4, 1, 4, 2, 3, 3, 4, 1, 5, 1, 2, 2, 4, 1, 5, 3, 2, 2, 2, 3, 4, 3, 3, 3, 4, 1, 4, 2, 2, 2, 4, 1, 5, 1, 3, 4, 4, 3, 4, 1, 3, 6, 4, 2, 4, 2, 3, 2, 2, 1, 2, 1, 3, 3, 4, 1, 4, 2, 2, 2, 4, 2
Offset: 0

Views

Author

Antti Karttunen, Nov 07 2019

Keywords

Crossrefs

Programs

  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A329028(n) = { my(m=Map(), p=2); while(n, mapput(m,(n%p),1); n = n\p; p = nextprime(1+p)); for(k=1,oo,if(!mapisdefined(m,k),return(k))); };
    A329030(n) = A329028(A276086(n));

Formula

a(n) = A329028(A276086(n)) = A134193(A276087(n)) .

A353512 n multiplied by the least nonzero digit missing from its primorial base representation.

Original entry on oeis.org

0, 2, 4, 6, 4, 15, 12, 14, 16, 18, 30, 33, 12, 39, 42, 45, 16, 51, 18, 38, 40, 42, 22, 92, 24, 50, 52, 54, 28, 87, 60, 62, 64, 66, 102, 105, 72, 74, 76, 78, 120, 123, 126, 129, 132, 135, 138, 141, 96, 98, 100, 102, 208, 212, 108, 110, 112, 114, 174, 177, 60, 183, 186, 189, 64, 195, 198, 201, 204, 207, 210, 213, 72
Offset: 0

Views

Author

Antti Karttunen, Apr 27 2022

Keywords

Examples

			19 in primorial base (A049345) is written as "301". The least missing nonzero digit is 2, thus A329028(19) = 2 and a(19) = 2*19 = 38.
		

Crossrefs

Cf. A049345, A328840 (the fixed points, positions where a(n) = n), A329028.
Cf. also A257080 for analogous sequence.

Programs

  • Mathematica
    a[n_] := Module[{k = n, p = 2, s = {}, r}, While[{k, r} = QuotientRemainder[k, p]; k != 0 || r != 0, AppendTo[s, r]; p = NextPrime[p]]; n * Min[Complement[Range[Max[s]+1], s]]]; a[0] = 0; Array[a, 100, 0] (* Amiram Eldar, Mar 13 2024 *)
  • PARI
    A329028(n) = { my(m=Map(), p=2); while(n, mapput(m,(n%p),1); n = n\p; p = nextprime(1+p)); for(k=1,oo,if(!mapisdefined(m,k),return(k))); };
    A353512(n) = (n * A329028(n));

Formula

a(n) = n * A329028(n).
Showing 1-5 of 5 results.