cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328854 Dirichlet g.f.: Product_{p prime} 1 / (1 - 2 * p^(-s))^2.

Original entry on oeis.org

1, 4, 4, 12, 4, 16, 4, 32, 12, 16, 4, 48, 4, 16, 16, 80, 4, 48, 4, 48, 16, 16, 4, 128, 12, 16, 32, 48, 4, 64, 4, 192, 16, 16, 16, 144, 4, 16, 16, 128, 4, 64, 4, 48, 48, 16, 4, 320, 12, 48, 16, 48, 4, 128, 16, 128, 16, 16, 4, 192, 4, 16, 48, 448, 16, 64, 4, 48, 16, 64, 4, 384, 4, 16, 48
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 28 2019

Keywords

Comments

Dirichlet convolution of A061142 with itself.

Crossrefs

Programs

  • Mathematica
    Table[2^PrimeOmega[n] DivisorSigma[0, n], {n, 1, 75}]
    f[p_, e_] := (e + 1)*2^e; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 02 2020 *)
  • PARI
    a(n) = numdiv(n)*2^bigomega(n); \\ Michel Marcus, Dec 02 2020
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1 - 2*X)^2)[n], ", ")) \\ Vaclav Kotesovec, Aug 22 2021

Formula

If n = Product (p_j^k_j) then a(n) = Product (2^k_j * (k_j + 1)).
a(n) = 2^bigomega(n) * tau(n), where bigomega = A001222 and tau = A000005.