cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A328856 Number of factorizations of n into distinct numbers with an odd number of distinct prime factors.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 28 2019

Keywords

Examples

			a(32) = 3 because 32 = 4 * 8 = 2 * 16.
		

Crossrefs

Programs

  • PARI
    seq(n)={my(v=vector(n, k, k==1)); for(k=2, n, if(omega(k)%2, my(m=logint(n, k), p=(1 + x + O(x*x^m)), w=vector(n)); for(i=0, m, w[k^i]=polcoef(p, i)); v=dirmul(v, w))); v} \\ Andrew Howroyd, Oct 29 2019, In older versions of PARI, use polcoeff instead of polcoef. - Antti Karttunen, Oct 29 2019
    
  • PARI
    A328856(n, k=n) = (((n<=k)&&((1==n)||(omega(n)%2))) + sumdiv(n, d, if(d > 1 && d <= k && d < n && (omega(d)%2), A328856(n/d, d-1)))); \\ Antti Karttunen, Oct 29 2019

Formula

Dirichlet g.f.: Product_{k>=1} (1 + A030230(k)^(-s)).
a(n) <= A045778(n). - Antti Karttunen, Oct 29 2019

Extensions

More terms from Antti Karttunen, Oct 29 2019
Showing 1-1 of 1 results.