cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A328875 Constant term in the expansion of (-1 + (1 + w + 1/w) * (1 + x + 1/x) * (1 + y + 1/y) * (1 + z + 1/z))^n.

Original entry on oeis.org

1, 0, 80, 2160, 121200, 6136800, 356570960, 21225304800, 1321586558320, 84398804078400, 5518934916677280, 367489108030524480, 24852668879410144080, 1702677155195779963200, 117960677109321028039200, 8251450286371615261498560, 582087494621171173360817520
Offset: 0

Views

Author

Seiichi Manyama, Oct 29 2019

Keywords

Comments

Also number of n-step closed walks (from origin to origin) in 4-dimensional lattice, using steps (t_1,t_2,t_3,t_4) (t_k = -1, 1 or 0 for 1 <= k <= 4) except for (0,0,0,0).
For fixed m > 1, Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A002426(k)^m ~ (3^m - 1)^(n + m/2) / (2^m * 3^(m*(m-1)/2) * Pi^(m/2) * n^(m/2)). - Vaclav Kotesovec, Oct 30 2019

Crossrefs

Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A002426(k)^m: A126869 (m=1), A094061 (m=2), A328874 (m=3), this sequence (m=4).
Cf. A326920.

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k) * Binomial[n, k] * Sum[Binomial[k, 2*j]*Binomial[2*j, j], {j, 0, k}]^4, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 30 2019 *)
  • PARI
    {a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*polcoef((1+x+1/x)^k, 0)^4)}

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A002426(k)^4.
a(n) ~ 5 * 80^(n+1) / (729 * Pi^2 * n^2). - Vaclav Kotesovec, Oct 30 2019

A326920 Constant term in the expansion of (-1 + Product_{k=1..n} (1 + x_k + 1/x_k))^n.

Original entry on oeis.org

1, 0, 8, 264, 121200, 332810400, 7753173594200, 1440193875113407680, 2250630808138439243100640, 29565964235758317208187044137600, 3307988125501026209547184198622507128848, 3165738749695300492286911657015518806826344524560
Offset: 0

Views

Author

Seiichi Manyama, Oct 29 2019

Keywords

Comments

Also number of n-step closed walks (from origin to origin) in n-dimensional lattice, using steps (t_1,t_2, ... ,t_n) (t_k = -1, 1 or 0 for 1 <= k <= n) except for (0,0, ... ,0) (t_k = 0 for 1 <= k <= n).

Crossrefs

Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A002426(k)^m: A126869 (m=1), A094061 (m=2), A328874 (m=3), A328875 (m=4).

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k) * Binomial[n, k] * Sum[Binomial[k, 2*j]*Binomial[2*j, j], {j, 0, k}]^n, {k, 0, n}], {n, 0, 12}] (* Vaclav Kotesovec, Oct 30 2019 *)
  • PARI
    {a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*polcoef((1+x+1/x)^k, 0)^n)}

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A002426(k)^n.
a(n) ~ 3^(n^2 + n/2) / (exp(3/16) * 2^n * Pi^(n/2) * n^(n/2)). - Vaclav Kotesovec, Oct 30 2019

A329819 Triangular array, read by rows: T(n,k) = [(x*y*z)^k] (-1 + (1 + x + 1/x)*(1 + y + 1/y)*(1 + z + 1/z))^n for -n <= k <= n.

Original entry on oeis.org

1, 1, 0, 1, 1, 6, 26, 6, 1, 1, 24, 195, 264, 195, 24, 1, 1, 60, 898, 3276, 5646, 3276, 898, 60, 1, 1, 120, 3065, 22260, 72730, 101520, 72730, 22260, 3065, 120, 1, 1, 210, 8526, 105690, 581475, 1510860, 2103740, 1510860, 581475, 105690, 8526, 210, 1
Offset: 0

Views

Author

Seiichi Manyama, Nov 21 2019

Keywords

Examples

			Triangle begins:
                                 1;
                         1,      0,     1;
                  1,     6,     26,     6,     1;
           1,    24,   195,    264,   195,    24,    1;
     1,   60,   898,  3276,   5646,  3276,   898,   60,   1;
1, 120, 3065, 22260, 72730, 101520, 72730, 22260, 3065, 120, 1;
		

Crossrefs

T(n,0) gives A328874.

Programs

  • PARI
    {T(n, k) = polcoef(polcoef(polcoef((-1+(1+x+1/x)*(1+y+1/y)*(1+z+1/z))^n, k), k), k)}

Formula

T(n,k) = T(n,-k).

A327751 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) is the constant term in the expansion of (-1 + Product_{j=1..n} (1 + x_j + 1/x_j))^k.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 8, 0, 1, 0, 6, 24, 26, 0, 1, 0, 0, 216, 264, 80, 0, 1, 0, 20, 1200, 5646, 2160, 242, 0, 1, 0, 0, 8840, 101520, 121200, 16080, 728, 0, 1, 0, 70, 58800, 2103740, 6136800, 2410326, 115464, 2186, 0, 1
Offset: 0

Views

Author

Seiichi Manyama, Oct 30 2019

Keywords

Comments

T(n,k) is the number of k-step closed walks (from origin to origin) in n-dimensional lattice, using steps (t_1,t_2, ... ,t_n) (t_j = -1, 1 or 0 for 1 <= j <= n) except for (0,0, ... ,0) (t_j = 0 for 1 <= j <= n).

Examples

			Square array begins:
   1, 0,   0,     0,       0,         0, ...
   1, 0,   2,     0,       6,         0, ...
   1, 0,   8,    24,     216,      1200, ...
   1, 0,  26,   264,    5646,    101520, ...
   1, 0,  80,  2160,  121200,   6136800, ...
   1, 0, 242, 16080, 2410326, 332810400, ...
		

Crossrefs

Columns k=0-3 give A000012, A000004, A024023, 24*A016212(n-2).
Rows n=0-4 give A000007, A126869, A094061, A328874, A328875.
Main diagonal is A326920.

Formula

T(n,k) = Sum_{j=0..k} (-1)^(k-j) * binomial(k,j) * A002426(j)^n.

A384105 Triangle read by rows: T(n,k) is the number of binary relations on a set of n objects, exactly k of which are self referencing, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 3, 4, 3, 16, 36, 36, 16, 218, 752, 1104, 752, 218, 9608, 45960, 90416, 90416, 45960, 9608, 1540944, 9133760, 22692704, 30194176, 22692704, 9133760, 1540944, 882033440, 6154473664, 18425858880, 30679088480, 30679088480, 18425858880, 6154473664, 882033440
Offset: 0

Views

Author

Peter Dolland, May 19 2025

Keywords

Comments

Also the number of essentially different simple digraphs on a node set A of size n with a distinguished subset B of size k, where elements are indistinguishable within B and within A \ B.

Examples

			Triangle starts:
            1
            1,              1
            3,              4,              3
           16,             36,             36,              16
          218,            752,           1104,             752,             218
         9608,          45960,          90416,           90416,           45960, ...
      1540944,        9133760,       22692704,        30194176,        22692704, ...
    882033440,     6154473664,    18425858880,     30679088480,     30679088480, ...
1793359192848, 14334221970688, 50138592081152, 100240050239744, 125284653092864, ...
...
		

Crossrefs

Cf. A000273 (edge cases), A000595 (row sums), A353996, A328874, A383617.

Formula

T(n,k) = T(n,n-k).
T(n,0) = T(n,n) = A000273(n).
T(n,1) = T(n,n-1) = A353996(n+1) = A329874(n,4).
Sum_{k=0..n} T(n,k) = A000595(n).
Showing 1-5 of 5 results.