A328875
Constant term in the expansion of (-1 + (1 + w + 1/w) * (1 + x + 1/x) * (1 + y + 1/y) * (1 + z + 1/z))^n.
Original entry on oeis.org
1, 0, 80, 2160, 121200, 6136800, 356570960, 21225304800, 1321586558320, 84398804078400, 5518934916677280, 367489108030524480, 24852668879410144080, 1702677155195779963200, 117960677109321028039200, 8251450286371615261498560, 582087494621171173360817520
Offset: 0
-
Table[Sum[(-1)^(n-k) * Binomial[n, k] * Sum[Binomial[k, 2*j]*Binomial[2*j, j], {j, 0, k}]^4, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 30 2019 *)
-
{a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*polcoef((1+x+1/x)^k, 0)^4)}
A326920
Constant term in the expansion of (-1 + Product_{k=1..n} (1 + x_k + 1/x_k))^n.
Original entry on oeis.org
1, 0, 8, 264, 121200, 332810400, 7753173594200, 1440193875113407680, 2250630808138439243100640, 29565964235758317208187044137600, 3307988125501026209547184198622507128848, 3165738749695300492286911657015518806826344524560
Offset: 0
-
Table[Sum[(-1)^(n-k) * Binomial[n, k] * Sum[Binomial[k, 2*j]*Binomial[2*j, j], {j, 0, k}]^n, {k, 0, n}], {n, 0, 12}] (* Vaclav Kotesovec, Oct 30 2019 *)
-
{a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*polcoef((1+x+1/x)^k, 0)^n)}
A329819
Triangular array, read by rows: T(n,k) = [(x*y*z)^k] (-1 + (1 + x + 1/x)*(1 + y + 1/y)*(1 + z + 1/z))^n for -n <= k <= n.
Original entry on oeis.org
1, 1, 0, 1, 1, 6, 26, 6, 1, 1, 24, 195, 264, 195, 24, 1, 1, 60, 898, 3276, 5646, 3276, 898, 60, 1, 1, 120, 3065, 22260, 72730, 101520, 72730, 22260, 3065, 120, 1, 1, 210, 8526, 105690, 581475, 1510860, 2103740, 1510860, 581475, 105690, 8526, 210, 1
Offset: 0
Triangle begins:
1;
1, 0, 1;
1, 6, 26, 6, 1;
1, 24, 195, 264, 195, 24, 1;
1, 60, 898, 3276, 5646, 3276, 898, 60, 1;
1, 120, 3065, 22260, 72730, 101520, 72730, 22260, 3065, 120, 1;
-
{T(n, k) = polcoef(polcoef(polcoef((-1+(1+x+1/x)*(1+y+1/y)*(1+z+1/z))^n, k), k), k)}
A327751
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) is the constant term in the expansion of (-1 + Product_{j=1..n} (1 + x_j + 1/x_j))^k.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 8, 0, 1, 0, 6, 24, 26, 0, 1, 0, 0, 216, 264, 80, 0, 1, 0, 20, 1200, 5646, 2160, 242, 0, 1, 0, 0, 8840, 101520, 121200, 16080, 728, 0, 1, 0, 70, 58800, 2103740, 6136800, 2410326, 115464, 2186, 0, 1
Offset: 0
Square array begins:
1, 0, 0, 0, 0, 0, ...
1, 0, 2, 0, 6, 0, ...
1, 0, 8, 24, 216, 1200, ...
1, 0, 26, 264, 5646, 101520, ...
1, 0, 80, 2160, 121200, 6136800, ...
1, 0, 242, 16080, 2410326, 332810400, ...
A384105
Triangle read by rows: T(n,k) is the number of binary relations on a set of n objects, exactly k of which are self referencing, 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 3, 4, 3, 16, 36, 36, 16, 218, 752, 1104, 752, 218, 9608, 45960, 90416, 90416, 45960, 9608, 1540944, 9133760, 22692704, 30194176, 22692704, 9133760, 1540944, 882033440, 6154473664, 18425858880, 30679088480, 30679088480, 18425858880, 6154473664, 882033440
Offset: 0
Triangle starts:
1
1, 1
3, 4, 3
16, 36, 36, 16
218, 752, 1104, 752, 218
9608, 45960, 90416, 90416, 45960, ...
1540944, 9133760, 22692704, 30194176, 22692704, ...
882033440, 6154473664, 18425858880, 30679088480, 30679088480, ...
1793359192848, 14334221970688, 50138592081152, 100240050239744, 125284653092864, ...
...
Showing 1-5 of 5 results.
Comments