cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328887 Array read by antidiagonals: T(n,m) is the number of acyclic edge sets in the complete bipartite graph K_{n,m}.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 15, 8, 1, 1, 16, 54, 54, 16, 1, 1, 32, 189, 328, 189, 32, 1, 1, 64, 648, 1856, 1856, 648, 64, 1, 1, 128, 2187, 9984, 16145, 9984, 2187, 128, 1, 1, 256, 7290, 51712, 129000, 129000, 51712, 7290, 256, 1, 1, 512, 24057, 260096, 968125, 1475856, 968125, 260096, 24057, 512, 1
Offset: 0

Views

Author

Andrew Howroyd, Oct 29 2019

Keywords

Comments

In other words, the number of spanning forests of the complete bipartite graph K_{n,m} with isolated vertices allowed.

Examples

			Array begins:
====================================================================
n\m | 0   1    2      3       4         5          6           7
----+---------------------------------------------------------------
  0 | 1   1    1      1       1         1          1           1 ...
  1 | 1   2    4      8      16        32         64         128 ...
  2 | 1   4   15     54     189       648       2187        7290 ...
  3 | 1   8   54    328    1856      9984      51712      260096 ...
  4 | 1  16  189   1856   16145    129000     968125     6925000 ...
  5 | 1  32  648   9984  129000   1475856   15450912   151201728 ...
  6 | 1  64 2187  51712  968125  15450912  219682183  2862173104 ...
  7 | 1 128 7290 260096 6925000 151201728 2862173104 48658878080 ...
  ...
		

Crossrefs

Column k=2 is A006234.
Main diagonal is A297077.

Programs

  • PARI
    \\ here U is A328888 as matrix.
    U(n, m=n)={my(M=matrix(n, m), N=matrix(n, m, n, m, n^(m-1) * m^(n-1))); for(n=1, n, for(m=1, m, M[n,m] = N[n,m] + sum(i=1, n-1, sum(j=1, m-1, binomial(n-1, i-1)*binomial(m, j)*N[i,j]*M[n-i, m-j])))); M}
    T(n, m=n)={my(M=U(n, m)); matrix(n+1, m+1, n, m, 1 + sum(i=1, n-1, sum(j=1, m-1, binomial(n-1,i)*binomial(m-1,j)*M[i,j])))}
    { my(A=T(7)); for(i=1, #A, print(A[i,])) }

Formula

T(n,m) = 1 + Sum_{i=1..n} Sum_{j=1..m} binomial(n,i)*binomial(m,j)*A328888(i,j).