cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328990 a(n) = (3*b(n) + b(n-1) + 1)/2, where b = A005409.

Original entry on oeis.org

2, 7, 19, 48, 118, 287, 695, 1680, 4058, 9799, 23659, 57120, 137902, 332927, 803759, 1940448, 4684658, 11309767, 27304195, 65918160, 159140518, 384199199, 927538919, 2239277040, 5406093002, 13051463047, 31509019099, 76069501248, 183648021598, 443365544447
Offset: 1

Views

Author

N. J. A. Sloane, Nov 09 2019

Keywords

Crossrefs

Programs

  • Magma
    I:=[2,7,19]; [n le 3 select I[n] else 3*Self(n-1)-Self(n-2)-Self(n-3): n in [1..40]] // Vincenzo Librandi, Nov 11 2019
    
  • Maple
    m:=35; S:=series( x*(2+x)/((1-x)*(1-2*x-x^2)), x, m+1):
    seq(coeff(S, x, j), j=1..m); # G. C. Greubel, Apr 23 2021
  • Mathematica
    LinearRecurrence[{3,-1,-1},{2,7,19},40] (* or *) CoefficientList[Series[(2-x-3x^2-x^3)/(1-x-x^2)/(1-3*x+x^2+x^3),{x,0,33}],x] (* Vincenzo Librandi, Nov 11 2019 *)
    (LucasL[Range[35] +2, 2] -6)/4 (* G. C. Greubel, Apr 23 2021 *)
  • PARI
    Vec(x*(2+x)/((1-x)*(1 -2*x -x^2)) + O(x^40)) \\ Colin Barker, Nov 10 2019
    
  • Sage
    [(lucas_number2(n+2,2,-1) -6)/4 for n in (1..35)] # G. C. Greubel, Apr 23 2021

Formula

From Colin Barker, Nov 10 2019: (Start)
G.f.: x*(2 + x)/((1 - x)*(1 - 2*x - x^2)).
a(n) = 3*a(n-1) - a(n-2) - a(n-3) for n>3.
a(n) = (-6 + (3-2*sqrt(2))*(1-sqrt(2))^n + (1+sqrt(2))^n*(3+2*sqrt(2))) / 4.
(End)
E.g.f.: (1/2)*exp(x)*(-3 + 3*cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x)). - Stefano Spezia, Nov 11 2019
2*a(n) = A001333(n+2) - 3. - R. J. Mathar, Jun 17 2020
a(n) = (A002203(n+2) - 6)/4. - G. C. Greubel, Apr 23 2021