cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329154 Coefficients of polynomials related to the sum of Gaussian binomial coefficients for q = 2. Triangle read by rows, T(n,k) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 6, 6, 3, 1, 26, 24, 12, 4, 1, 158, 130, 60, 20, 5, 1, 1330, 948, 390, 120, 30, 6, 1, 15414, 9310, 3318, 910, 210, 42, 7, 1, 245578, 123312, 37240, 8848, 1820, 336, 56, 8, 1, 5382862, 2210202, 554904, 111720, 19908, 3276, 504, 72, 9, 1
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is the number of n X n matrices over F_2 in reduced row echelon form having exactly k zero-columns. Equivalently, T(n,k) is the number of subspaces of F_2^n that "involve" n-k coordinates. (For the definition of "involve" see the link below: D. E. Knuth, Letter to Daniel Ullman and others). - Geoffrey Critzer, May 03 2025

Examples

			Triangle starts:
[0] [1]
[1] [1,       1]
[2] [2,       2,       1]
[3] [6,       6,       3,      1]
[4] [26,      24,      12,     4,      1]
[5] [158,     130,     60,     20,     5,     1]
[6] [1330,    948,     390,    120,    30,    6,    1]
[7] [15414,   9310,    3318,   910,    210,   42,   7,   1]
[8] [245578,  123312,  37240,  8848,   1820,  336,  56,  8,  1]
[9] [5382862, 2210202, 554904, 111720, 19908, 3276, 504, 72, 9, 1]
		

Crossrefs

Row sums: A006116, first column: A135922.

Programs

  • Maple
    T := (n, k) -> local j, m; pochhammer(n - k + 1, k)*add((-1)^j*add(product((2^(i + m) - 1)/(2^i - 1), i = 1..n-k-m-j), m = 0..n-k-j)*binomial(n - k, j), j = 0..n-k) / k!: for n from 0 to 9 do seq(T(n,k), k=0..n) od;  # Peter Luschny, Oct 08 2023
  • Mathematica
    T[n_,k_]:= (Pochhammer[n-k+1,k]/(k!)*Sum[(-1)^j*Sum[Product[(2^(i+m)-1)/(2^i-1),{i,1,n-k-m-j}],{m,0,n-k-j}]*Binomial[n-k,j],{j,0,n-k}]); Flatten[Table[T[n,k],{n,0,9},{k,0,n}]] (* Detlef Meya, Oct 07 2023 *)
  • Sage
    R = PolynomialRing(QQ, 'x')
    x = R.gen()
    @cached_function
    def P(n, k, x):
        if k < 0 or n < 0: return R(0)
        if k == 0: return R(1)
        return x*P(n, k-1, x) + 2^k*P(n-1, k, (x+1)/2)
    def row(n): return sum(P(n-k, k, x) for k in range(n+1)).coefficients()
    print(flatten([row(n) for n in range(10)]))

Formula

Let P(n, k, x) = x*P(n, k-1, x) + 2^k*P(n-1, k, (x+1)/2) and Q(n, x) = Sum_{k=0..n} P(n-k, k, x) then T(n, k) = [x^k] Q(n, x).
T(n, k) = (1/k!) * Pochhammer(n-k+1, k) * Sum_{j=0..n-k}((-1)^j*Sum_{m=0..n-k-j} (Product_{i=1..n-k-m-j} ((2^(i+m)-1)/(2^i-1))) * binomial(n-k, j)). - Detlef Meya, Oct 07 2023
T(n,k) = binomial(n,k)*A135922(n-k). (see Stanley-Locke link above) - Geoffrey Critzer, May 03 2025
E.g.f.: exp(y x)*f(x) where f(x) is the e.g.f. for A135922. - Geoffrey Critzer, May 03 2025