A329154 Coefficients of polynomials related to the sum of Gaussian binomial coefficients for q = 2. Triangle read by rows, T(n,k) for 0 <= k <= n.
1, 1, 1, 2, 2, 1, 6, 6, 3, 1, 26, 24, 12, 4, 1, 158, 130, 60, 20, 5, 1, 1330, 948, 390, 120, 30, 6, 1, 15414, 9310, 3318, 910, 210, 42, 7, 1, 245578, 123312, 37240, 8848, 1820, 336, 56, 8, 1, 5382862, 2210202, 554904, 111720, 19908, 3276, 504, 72, 9, 1
Offset: 0
Examples
Triangle starts: [0] [1] [1] [1, 1] [2] [2, 2, 1] [3] [6, 6, 3, 1] [4] [26, 24, 12, 4, 1] [5] [158, 130, 60, 20, 5, 1] [6] [1330, 948, 390, 120, 30, 6, 1] [7] [15414, 9310, 3318, 910, 210, 42, 7, 1] [8] [245578, 123312, 37240, 8848, 1820, 336, 56, 8, 1] [9] [5382862, 2210202, 554904, 111720, 19908, 3276, 504, 72, 9, 1]
Links
- D. E. Knuth, Letter to Daniel Ullman and others, Apr 29 1997 [Annotated scanned copy, with permission]
- R. P. Stanley and S. C. Locke, Graphs without increasing paths: Solution to Problem 10572, The American Mathematical Monthly, 106(2) (1999), 168.
Programs
-
Maple
T := (n, k) -> local j, m; pochhammer(n - k + 1, k)*add((-1)^j*add(product((2^(i + m) - 1)/(2^i - 1), i = 1..n-k-m-j), m = 0..n-k-j)*binomial(n - k, j), j = 0..n-k) / k!: for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, Oct 08 2023
-
Mathematica
T[n_,k_]:= (Pochhammer[n-k+1,k]/(k!)*Sum[(-1)^j*Sum[Product[(2^(i+m)-1)/(2^i-1),{i,1,n-k-m-j}],{m,0,n-k-j}]*Binomial[n-k,j],{j,0,n-k}]); Flatten[Table[T[n,k],{n,0,9},{k,0,n}]] (* Detlef Meya, Oct 07 2023 *)
-
Sage
R = PolynomialRing(QQ, 'x') x = R.gen() @cached_function def P(n, k, x): if k < 0 or n < 0: return R(0) if k == 0: return R(1) return x*P(n, k-1, x) + 2^k*P(n-1, k, (x+1)/2) def row(n): return sum(P(n-k, k, x) for k in range(n+1)).coefficients() print(flatten([row(n) for n in range(10)]))
Formula
Let P(n, k, x) = x*P(n, k-1, x) + 2^k*P(n-1, k, (x+1)/2) and Q(n, x) = Sum_{k=0..n} P(n-k, k, x) then T(n, k) = [x^k] Q(n, x).
T(n, k) = (1/k!) * Pochhammer(n-k+1, k) * Sum_{j=0..n-k}((-1)^j*Sum_{m=0..n-k-j} (Product_{i=1..n-k-m-j} ((2^(i+m)-1)/(2^i-1))) * binomial(n-k, j)). - Detlef Meya, Oct 07 2023
T(n,k) = binomial(n,k)*A135922(n-k). (see Stanley-Locke link above) - Geoffrey Critzer, May 03 2025
E.g.f.: exp(y x)*f(x) where f(x) is the e.g.f. for A135922. - Geoffrey Critzer, May 03 2025
Comments