cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A329194 a(n) = floor(log_3(n^2)) = floor(2 log_3(n)).

Original entry on oeis.org

0, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 1

Views

Author

M. F. Hasler, Nov 07 2019

Keywords

Crossrefs

Cf. A000290 (n^2), A062153 (log_3), A329202 (log_2(n^2)), A329193 (log_2(n^3)).

Programs

  • Mathematica
    Table[Floor[Log[3,n^2]],{n,120}] (* Harvey P. Dale, May 04 2025 *)
  • PARI
    apply( A329194(n)=logint(n^2,3), [1..99])

Formula

2*A062153(n) <= a(n) = floor(log_3(n^2)) = A062153(A000290(n)).

A338433 Values of n for which A070939(n^3) differs from A004221(n).

Original entry on oeis.org

1, 20, 40, 80, 101, 126, 127, 159, 160, 161, 200, 201, 202, 203, 252, 253, 254, 255, 317, 318, 319, 320, 321, 322, 399, 400, 401, 402, 403, 404, 405, 406, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645
Offset: 1

Views

Author

Jeremy Gardiner, Oct 27 2020

Keywords

Comments

Sequence gives the values of n for which the length of the binary representation of n^3 differs from ceiling(10*log_10(n)) rounded up.
The largest number not in the sequence is 158489319246111348520210137339 = floor(10^29.2). - Robert Israel, Oct 27 2020

Crossrefs

Programs

  • Maple
    filter:= n -> evalb(ilog2(n^3)+1 <> ceil(10*log[10](n))):
    select(filter, [$1..1000]); # Robert Israel, Oct 27 2020
  • Mathematica
    Select[Range[1000], IntegerLength[#^3, 2] != Ceiling[10*Log10[#]] &] (* Amiram Eldar, Oct 27 2020 *)

A225668 a(n) = floor(4*log_2(n)).

Original entry on oeis.org

0, 4, 6, 8, 9, 10, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 24
Offset: 1

Views

Author

Jonathan Vos Post, May 11 2013

Keywords

Comments

Arises in analysis of "when to clean your room".

Examples

			a(3) = floor(4*log_2(3)) = floor(6.33985000) = 6.
a(8) = floor(4*log_2(8)) = floor(4*3) = 12.
		

Crossrefs

Cf. A000583 (n^4), A000523 (floor log_2), A004257 (round log_2), A029837 (ceiling log_2).
Cf. A329202 (log_2(n^2)), A329193 (log_2(n^3)).

Programs

Formula

a(n) = floor(4*log(n)/log(2)).
a(n) = floor(log_2(n^4)) = A000523(A000583(n)), i.e., this A225668 = A000523 o A000583. - M. F. Hasler, Nov 07 2019

Extensions

Better definition from M. F. Hasler, Nov 07 2019

A329195 a(n) = floor(log_5(n^2)) = floor(2 log_5(n)).

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

M. F. Hasler, Nov 07 2019

Keywords

Crossrefs

Cf. A000290 (n^2), A062153 (log_3), A329202 (log_2(n^2)), A329193 (log_2(n^3)), A329194 (log_3(n^2)).

Programs

  • Mathematica
    Table[Floor[2Log[5,n]],{n,100}] (* Harvey P. Dale, Dec 14 2021 *)
  • PARI
    apply( A329195(n)=logint(n^2,5), [1..99])
Showing 1-4 of 4 results.