cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329494 Numerator of 2*(2*n+1)/(n+2).

Original entry on oeis.org

1, 2, 5, 14, 3, 22, 13, 10, 17, 38, 7, 46, 25, 18, 29, 62, 11, 70, 37, 26, 41, 86, 15, 94, 49, 34, 53, 110, 19, 118, 61, 42, 65, 134, 23, 142, 73, 50, 77, 158, 27, 166, 85, 58, 89, 182, 31, 190, 97, 66, 101, 206, 35, 214, 109, 74, 113, 230, 39, 238, 121
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2019 following a suggestion from Gary W. Adamson

Keywords

Comments

Also the numerator of Catalan(n+1)/Catalan(n). For denominators - in both cases - see A060789.
The GCD of 2(2n+1) and n+2 is the GCD of 2*3 and n+2, i.e. a(n) = 2n+1 if 2|n+2, a(n) = 2(2n+1)/3 if 3|n+2, and a(n)=(2n+1)/3 if 6|n+2, and a(n)=2(2n+1) otherwise. - R. J. Mathar, Jan 09 2020

Examples

			Fractions begin with 1, 2, 5/2, 14/5, 3, 22/7, 13/4, 10/3, 17/5, 38/11, 7/2, ...
		

Crossrefs

Programs

  • Magma
    [Numerator(2*(2*n+1)/(n+2)): n in [0..60]]; // Vincenzo Librandi, Jan 10 2020
  • Mathematica
    Numerator@Table[(2 (2 n + 1) / (n + 2)), {n, 0, 60}] (* Vincenzo Librandi, Jan 10 2020 *)
  • PARI
    a(n) = numerator(2*(2*n+1)/(n+2)); \\ Michel Marcus, Nov 17 2019
    

Formula

From Colin Barker, Nov 17 2019: (Start)
G.f.: (1 + 5*x^2 + x^4)*(1 + 2*x + 4*x^3 + 2*x^4 + x^6 + 2*x^7) / (1 - 2*x^6 + x^12).
a(n) = 2*a(n-6) - a(n-12) for n>11. (End)
a(n) = -(1/18)*(1 + 2*n)*(-21 + 2*cos(n*Pi/3) - 6*cos(2*n*Pi/3) + 7*(-1)^n + 2*sqrt(3)*sin(n*Pi/3) + 6*sqrt(3)*sin(2*n*Pi/3)). - Stefano Spezia, Nov 17 2019 after Colin Barker
Sum_{k=1..n} a(k) ~ (7/6) * n^2. - Amiram Eldar, Apr 04 2024