cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A381056 Product of row n of A329708.

Original entry on oeis.org

1, 16, 4320, 7680000, 56672000000, 1315328716800000, 79725223359774720000, 11041460968683995136000000, 3159164253667495772160000000000, 1725992749819407775039488000000000000, 1690274868390850110509130354524160000000000, 2816890048270042497343000411961733572198400000000
Offset: 0

Views

Author

DarĂ­o Clavijo, Feb 12 2025

Keywords

Examples

			Row n=2 of A329708 is {1, 4, 10, 12, 9} and the product of those is a(2) = 4320.
		

Crossrefs

Programs

  • PARI
    a(n) = vecprod(Vec(sum(k=0, n, (k+1)*x^k)^2)); \\ Michel Marcus, Feb 13 2025
  • Python
    from sympy import prod
    def a(n):
        p = ((n+1)*(n+2)*(n+3)) // 6
        p *= prod(((k*(k+1)*(k+2))*((n+k+1)*(n+k+2)*(n+k+3)-2*k*(k+1)*(3*n+k+5)))//36  for k in range(1,n+1))
        return p
    print([a(n)  for n in range(0, 14)])
    

Formula

a(n) = Product_{k=0..2*n} A329708(n,k).
a(n) = Product_{k=0..2*n} (Sum_{i=max(0,k-n)..min(k,n)} (i+1)*(k-i+1)).
a(n) == 0 (mod (n+1)^3).
a(n) = (n+1)*(n+2)*(n+3)*(1/6)*(Product_{k=1..n} k*(k+1)*(k+2)*((n+k+1)*(n+k+2)*(n+k+3)-2*k*(k+1)*(3*n+k+5))/36).
a(n) = binomial(n+3,3)*(Product_{k=1..n} binomial(k+2,3)*(binomial(k+n+3,3)-(k*(k+1)*(3*n+k+5))/3)).
a(n) = (Product_{k=0..n-1} Sum_{i=0..k} (i+1)*(k-i+1)) * (Product_{k=n..2*n} Sum_{i=k-n..n} (i+1)*(k-i+1)).
a(n) = (Product_{k=0..n-1} binomial(k+3,3))*(Product{k=n..2*n} binomial(k+3,3)-(2*n+4)*binomial(k+2-n)+(2*n+2)*binomial(k+1-n)).

A329709 Triangle, read by rows, where the n-th row lists the (n^2+1) coefficients of (1+2*x+...+(n+1)*x^n)^n.

Original entry on oeis.org

1, 1, 2, 1, 4, 10, 12, 9, 1, 6, 21, 56, 111, 174, 219, 204, 144, 64, 1, 8, 36, 120, 330, 768, 1544, 2728, 4275, 5920, 7256, 7848, 7386, 5880, 3900, 2000, 625, 1, 10, 55, 220, 715, 2002, 4970, 11120, 22685, 42570, 73953, 119340, 179305, 251230, 328450, 400304, 453695, 476870, 462815, 411740, 332045, 239070, 150840, 79920, 32400, 7776
Offset: 0

Views

Author

Seiichi Manyama, Feb 29 2020

Keywords

Examples

			Triangle begins:
  1;
  1, 2;
  1, 4, 10, 12,   9;
  1, 6, 21, 56, 111, 174, 219, 204, 144, 64;
  ...
		

Crossrefs

Programs

  • PARI
    for(n=0, 5, print(Vecrev(sum(k=0, n, (k+1)*x^k)^n), ", "))
Showing 1-2 of 2 results.