A329742 Indices n of Riemann zeta zeros for successive records of the normalized delta defined as d(n) = (z(n+1)-z(n))*(log(z(n)/(2Pi))/(2Pi)) where z(n) is the imaginary part of the n-th Riemann zero.
1, 3, 5, 8, 14, 25, 33, 64, 126, 213, 256, 379, 1704, 1935, 2292, 8571, 10942, 12347, 13298, 15323, 36719, 46589, 103715, 185013, 880694, 1493008, 3206674, 12534781, 14145077, 22653912, 24246374, 33742399, 65336924, 298466597, 566415148, 1938289664, 2122614029, 4020755339, 4219726754, 16265396008, 17003807756
Offset: 1
Keywords
Examples
n | a(n) | d(n) ---+---------+--------- 1 | 1 | 0.88871 2 | 3 | 1.19034 3 | 5 | 1.22634 4 | 8 | 1.43763 5 | 14 | 1.54672 6 | 25 | 1.55244 7 | 33 | 1.74300 8 | 64 | 1.83656 9 | 126 | 1.95400 10 | 213 | 1.95626 11 | 256 | 1.99205 12 | 379 | 2.20138 13 | 1704 | 2.20198 14 | 1935 | 2.45843 15 | 2292 | 2.46772 16 | 8571 | 2.48347 17 | 10942 | 2.50594 18 | 12347 | 2.50648 19 | 13298 | 2.52517 20 | 15323 | 2.67728 21 | 36719 | 2.76188 22 | 46589 | 2.80523 23 | 103715 | 2.83121 24 | 185013 | 3.11058 25 | 880694 | 3.21426 26 | 1493008 | 3.30347
Links
- Artur Jasinski, Table of n, a(n) for n = 1..41
- Ghaith Ayesh Hiary, Fast methods to compute the Riemann zeta function, Ann. of Math. (2) 174 (2011), no. 2, 891-946. MR 2831110 (2012g:11154).
- David Platt, Results computation of the largest relative gaps between successive zeta zeros, 2020.
Programs
-
Mathematica
prec = 30; max = 0; aa = {}; Do[kk = N[Im[(ZetaZero[n + 1] - ZetaZero[n])],prec] (Log[N[Im[ZetaZero[n]], prec]/(2 Pi)]/(2 Pi)); If[kk > max, max = kk; AppendTo[aa, n]], {n, 1, 2000000}]; aa
Extensions
a(27)-a(41) computed by David Platt, Jan 03 2020
Comments