cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329822 The minimum weight of a Boolean function of algebraic degree at most n-3 whose support contains n linearly independent elements.

Original entry on oeis.org

8, 8, 12, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128
Offset: 3

Views

Author

Christof Beierle, Nov 22 2019

Keywords

Comments

Equivalently, a(n) is the minimum number for which there exists a subset S of GF(2)^n with a(n) elements which spans GF(2)^n as a vector space and Sum_{s in S} f(s) = 0 for all n-bit Boolean functions of algebraic degree at most 2.

Crossrefs

A052928(n+2) gives the minimum weight of a Boolean function of algebraic degree at most n-2 whose support contains n linearly independent elements (n >= 2).

Programs

  • Mathematica
    Drop[#, 3] &@ CoefficientList[Series[2 x^3*(4 - 4 x + 2 x^2 - 2 x^3 + x^4)/(1 - x)^2, {x, 0, 64}], x] (* Michael De Vlieger, Nov 22 2019 *)
  • PARI
    Vec(2*x^3*(4 - 4*x + 2*x^2 - 2*x^3 + x^4) / (1 - x)^2 + O(x^60)) \\ Colin Barker, Nov 22 2019

Formula

For n = 4 and n > 5, a(n) = 2n. As exceptions, a(3) = 8, a(5) = 12. Proven in Beierle, Biryukov, Udovenko, 2019.
From Colin Barker, Nov 22 2019: (Start)
G.f.: 2*x^3*(4 - 4*x + 2*x^2 - 2*x^3 + x^4) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>7.
(End)
E.g.f.: 2*(-1 + exp(x))*x -2*x^2 + x^3/3 + x^5/60. - Stefano Spezia, Nov 22 2019