A329822 The minimum weight of a Boolean function of algebraic degree at most n-3 whose support contains n linearly independent elements.
8, 8, 12, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128
Offset: 3
Links
- Colin Barker, Table of n, a(n) for n = 3..1000
- C. Beierle, A. Biryukov and A. Udovenko, On degree-d zero-sum sets of full rank, Cryptography and Communications, November 2019.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
A052928(n+2) gives the minimum weight of a Boolean function of algebraic degree at most n-2 whose support contains n linearly independent elements (n >= 2).
Programs
-
Mathematica
Drop[#, 3] &@ CoefficientList[Series[2 x^3*(4 - 4 x + 2 x^2 - 2 x^3 + x^4)/(1 - x)^2, {x, 0, 64}], x] (* Michael De Vlieger, Nov 22 2019 *)
-
PARI
Vec(2*x^3*(4 - 4*x + 2*x^2 - 2*x^3 + x^4) / (1 - x)^2 + O(x^60)) \\ Colin Barker, Nov 22 2019
Formula
For n = 4 and n > 5, a(n) = 2n. As exceptions, a(3) = 8, a(5) = 12. Proven in Beierle, Biryukov, Udovenko, 2019.
From Colin Barker, Nov 22 2019: (Start)
G.f.: 2*x^3*(4 - 4*x + 2*x^2 - 2*x^3 + x^4) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>7.
(End)
E.g.f.: 2*(-1 + exp(x))*x -2*x^2 + x^3/3 + x^5/60. - Stefano Spezia, Nov 22 2019
Comments