A361686 a(n) is the least totient divisor of A329872(n), where A329872 are nontotients (A005277) that are the product of two totients (A002202).
22, 22, 10, 46, 58, 46, 78, 82, 58, 46, 102, 22, 106, 82, 46, 138, 106, 82, 166, 172, 178, 190, 106, 226, 82, 166, 238, 172, 178, 22, 106, 262, 190, 282, 22, 106, 310, 316, 226, 82, 166, 238, 172, 346, 46, 178, 22, 358, 22, 10, 366, 106, 262, 382, 82, 388, 58, 22, 22, 46, 418
Offset: 1
Keywords
Examples
a(3)=10 because A329872(3)=1100 which can be expressed as 1*1100, 2*550, 4*275, 5*220, 10*110, ... where 10*110 is the first case where both factors are nontotients.
Links
- Michel Marcus, Table of n, a(n) for n = 1..7280
Programs
-
PARI
is(n) = if(!istotient(n), my(v=divisors(n)); for(i=1, (1+#v)\2, if(istotient(v[i])&&istotient(n/v[i]), return(1))); 0); \\ A329872 lista(nn) = for (n=1, nn, if (is(n), my(d=divisors(n)); for (i=1, (1+#d)\2, if (istotient(d[i]) && istotient(n/d[i]), print1(d[i], ", "); break););););
Comments