A329959 Binomial transform of a signed variant of triangle A050166.
1, 0, 2, 0, 0, 5, 0, 0, 1, 14, 0, 0, 1, 8, 42, 0, 0, 1, 10, 45, 132, 0, 0, 1, 12, 69, 220, 429, 0, 0, 1, 14, 98, 406, 1001, 1430, 0, 0, 1, 16, 132, 672, 2184, 4368, 4862, 0, 0, 1, 18, 171, 1032, 4152, 11088, 18564, 16796, 0, 0, 1, 20, 215, 1500, 7185, 23904, 54060, 77520, 58786
Offset: 0
Examples
The signed variant of A050166 is A050166(n,k) * (-1)^(n+k): 1; -1, 2; 1, -4, 5; -1, 6, -14, 14; 1, -8, 27, -48, 42; ... Let the above triangle = S, and Pascal's triangle = P as an infinite lower triangular matrix. Then T = P * S gives: 1; 0, 2; 0, 0, 5; 0, 0, 1, 14; 0, 0, 1, 8, 42; 0, 0, 1, 10, 45, 132; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Programs
-
GAP
B:=Binomial;; Flat(List([0..10], n-> List([0..n], k-> Sum([k..n], j-> (-1)^(k+j)*B(n,j)*(B(2*j,k) - B(2*j,k-2)) )))); # G. C. Greubel, Jan 06 2020
-
Magma
T:= func< n,k | &+[(-1)^(k+j)*Binomial(n,j)*(Binomial(2*j,k) - Binomial(2*j,k-2)): j in [k..n]] >; [T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jan 06 2020
-
Maple
S:= (n, k)-> (binomial(2*n, k)-binomial(2*n, k-2))*(-1)^(n+k): T:= (n, k)-> add(binomial(n, j)*S(j, k), j=k..n): seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Nov 27 2019
-
Mathematica
Table[Sum[(-1)^(k+j)*Binomial[n, j]*(Binomial[2*j, k] - Binomial[2*j, k-2]), {j, k, n}], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 06 2020 *)
-
PARI
T(n,k) = sum(j=k, n, (-1)^(k+j)*binomial(n,j)*(binomial(2*j,k) - binomial(2*j,k-2)) ); \\ G. C. Greubel, Jan 06 2020
-
Sage
[[sum((-1)^(k+j)*binomial(n,j)*(binomial(2*j,k) - binomial(2*j,k-2)) for j in (k..n)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jan 06 2020
Formula
T(n,k) = Sum_{j=k..n} C(n,j) * (-1)^(j+k) * A050166(j,k). - Alois P. Heinz, Nov 27 2019
Extensions
New offset and more terms from Alois P. Heinz, Nov 25 2019
Comments