A329973 Smallest prime p such that both 2*prime(n+1)+p and p*prime(n+1)+2 are primes.
5, 3, 3, 7, 3, 3, 3, 7, 3, 5, 23, 67, 3, 7, 7, 13, 5, 5, 7, 5, 5, 67, 3, 3, 37, 17, 43, 5, 13, 3, 7, 127, 3, 19, 5, 17, 53, 3, 3, 43, 5, 19, 23, 3, 3, 101, 17, 3, 41, 37, 13, 17, 7, 7, 37, 3, 59, 23, 31, 257, 7, 47, 31, 5, 7, 11, 3, 67, 3, 3, 43, 23
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local pn,p; pn:= ithprime(n+1); p:= 1; do p:= nextprime(p); if isprime(2*pn+p) and isprime(p*pn+2) then return p fi od end proc: map(f, [$1..100]); # Robert Israel, Jul 17 2020
-
Mathematica
f[n_Integer/;n>1]:=Module[{p=3},While[Or[CompositeQ[2*Prime[n]+p],CompositeQ[p*Prime[n]+2]],p=NextPrime[p]];p];f/@Range[2,100]
-
PARI
a(n) = my(p=2,q=prime(n+1)); while(!isprime(2*q+p) || !isprime(p*q+2), p=nextprime(p+1)); p; \\ Michel Marcus, Jun 08 2020
Comments