A330024 a(n) = floor(n/z) where z is the number of zeros in the decimal expansion of 2^n, and a(n)=0 when z=0.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 11, 12, 0, 0, 0, 0, 17, 0, 0, 20, 21, 22, 23, 0, 0, 26, 0, 0, 29, 30, 0, 0, 0, 0, 0, 0, 0, 38, 0, 40, 41, 21, 14, 44, 45, 46, 47, 48, 0, 50, 0, 26, 17, 27, 27, 28, 57, 58, 29, 30, 20, 31, 31, 32, 65, 66, 0, 68, 23, 23, 71, 0
Offset: 0
Examples
a(11) = 11 because 2^11 = 2048, there is 1 zero in 2048 and the integer part of 11/1 is 11.
Links
- Metin Sariyar, Table of n, a(n) for n = 0..32000
Programs
-
Magma
a:=[0]; for n in [1..72] do z:=Multiplicity(Intseq(2^n),0); if z ne 0 then Append(~a,Floor(n/z)); else Append(~a,0); end if; end for; a; // Marius A. Burtea, Nov 27 2019
-
Maple
f:= proc(n) local z; z:= numboccur(0,convert(2^n,base,10)); if z = 0 then 0 else floor(n/z) fi end proc: map(f, [$1..100]); # Robert Israel, Nov 28 2019
-
Mathematica
Do[z=DigitCount[2^n,10,0];an=IntegerPart[n/z];If[z==0,Print[0],Print[an]],{n,0,8000}]
-
PARI
a(n) = my(z=#select(d->!d, digits(2^n))); if (z, n\z, 0); \\ Michel Marcus, Jan 07 2020
-
Python
def A330024(n): z=str(2**n).count('0') return n//z if z else 0 # Pontus von Brömssen, Jul 24 2021
Formula
Conjecture: a(n) = 33 (= floor(10/log_10(2))) for all sufficiently large n. - Pontus von Brömssen, Jul 23 2021
Comments