cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330148 a(n) = Sum_{k=1..n} binomial(n,k) * phi(k) * phi(n - k + 1), where phi = A000010.

Original entry on oeis.org

1, 3, 11, 30, 94, 238, 692, 1596, 4536, 9350, 27840, 52884, 149668, 294838, 782432, 1463224, 4095792, 7460274, 20229356, 36847380, 100317284, 170262974, 492659240, 814679680, 2184447760, 3965791284, 9988168320, 17883230712, 49362800340, 80674575956, 213420581248
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 03 2019

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(n,k)*EulerPhi(k)*EulerPhi(n-k+1):k in [1..n]]:n in [1..30]]; // Marius A. Burtea, Dec 03 2019
    
  • Mathematica
    Table[Sum[Binomial[n, k] EulerPhi[k] EulerPhi[n - k + 1], {k, 1, n}], {n, 1, 31}]
    nmax = 31; CoefficientList[Series[(1/2) D[Sum[EulerPhi[k] x^k/k!, {k, 1, nmax}]^2, x], {x, 0, nmax}], x] Range[0, nmax]! // Rest
  • PARI
    a(n) = sum(k=1, n, binomial(n,k)*eulerphi(k)*eulerphi(n-k+1)); \\ Michel Marcus, Dec 03 2019

Formula

E.g.f.: (1/2) * d/dx (Sum_{k>=1} phi(k) * x^k / k!)^2.