cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330151 Partial sums of 4th powers of the even numbers.

Original entry on oeis.org

0, 16, 272, 1568, 5664, 15664, 36400, 74816, 140352, 245328, 405328, 639584, 971360, 1428336, 2042992, 2852992, 3901568, 5237904, 6917520, 9002656, 11562656, 14674352, 18422448, 22899904, 28208320, 34458320, 41769936, 50272992, 60107488, 71423984, 84383984
Offset: 0

Views

Author

Assoul Abdelkarim, Dec 03 2019

Keywords

Examples

			a(4) = 0^4 + 2^4 + 4^4 + 6^4 + 8^4 = 5664.
		

Crossrefs

Partial sums of A016744.

Programs

  • Mathematica
    a[n_] := (8/15)*n*(6*n^4 + 15*n^3 + 10*n^2 - 1); Array[a, 31, 0] (* Amiram Eldar, Dec 08 2019 *)
  • PARI
    a(n) = sum(i=0, n, 16*i^4); \\ Jinyuan Wang, Dec 07 2019
    
  • PARI
    concat(0, Vec(16*x*(1 + x)*(1 + 10*x + x^2) / (1 - x)^6 + O(x^30))) \\ Colin Barker, Dec 08 2019
    
  • Python
    def A330151(n): return 8*n*(n**2*(n*(6*n + 15) + 10) - 1)//15 # Chai Wah Wu, Dec 07 2021

Formula

a(n) = Sum_{k=1..n} (2*k)^4 = (8/15)*n*(6*n^4 + 15*n^3 + 10*n^2 - 1).
a(n) = 16*A000538(n).
From Colin Barker, Dec 08 2019: (Start)
G.f.: 16*x*(1 + x)*(1 + 10*x + x^2) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
(End)
E.g.f.: (8/15)*exp(x)*x*(30 + 225*x + 250*x^2 + 75*x^3 + 6*x^4). - Stefano Spezia, Dec 08 2019
a(n+1) = 12*A002299(n) + A002492(n+1). - Yasser Arath Chavez Reyes, Mar 07 2024

Extensions

More terms from Jinyuan Wang, Dec 07 2019