cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330320 a(n) = Sum_{i=1..n} tau(i)*tau(i+1), where tau(n) = A000005(n) is the number of divisors of n.

Original entry on oeis.org

2, 6, 12, 18, 26, 34, 42, 54, 66, 74, 86, 98, 106, 122, 142, 152, 164, 176, 188, 212, 228, 236, 252, 276, 288, 304, 328, 340, 356, 372, 384, 408, 424, 440, 476, 494, 502, 518, 550, 566, 582, 598, 610, 646, 670, 678, 698, 728, 746, 770, 794, 806, 822, 854, 886, 918, 934, 942, 966, 990, 998, 1022, 1064, 1092, 1124, 1140
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 2019

Keywords

Comments

For background references see A330570.

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, page 61.

Crossrefs

Partial sums of A092517.

Programs

  • Mathematica
    Accumulate[a[n_]:=DivisorSum[n+1, DivisorSigma[0, n]&]; Array[a, 66]] (* Vincenzo Librandi, Jan 10 2020 *)
    Accumulate[Times@@@Partition[DivisorSigma[0,Range[70]],2,1]] (* Harvey P. Dale, Nov 02 2023 *)
  • PARI
    a(n) = sum(i=1, n, numdiv(i*(i+1))); \\ Michel Marcus, Jan 11 2020

Formula

a(n) ~ (1/zeta(2)) * n * log(n)^2. - Amiram Eldar, Mar 05 2020