A330358 a(n) = n mod 5 + n mod 25 + ... + n mod 5^k, where 5^k <= n < 5^(k+1).
0, 0, 0, 0, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 2, 4, 6, 8, 5, 7, 9, 11, 13, 10, 12, 14, 16, 18, 15, 17, 19, 21, 23, 20, 22, 24, 26, 28, 0, 2, 4, 6, 8, 5, 7, 9, 11, 13, 10, 12, 14, 16, 18, 15, 17, 19, 21, 23, 20, 22, 24, 26, 28, 0, 2, 4, 6, 8, 5, 7, 9, 11, 13, 10
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a:= n-> add(irem(n, 5^j), j=1..ilog[5](n)): seq(a(n), n=1..105); # Alois P. Heinz, Dec 13 2019
-
Mathematica
a[n_] := Sum[Mod[n, 5^j], {j, 1, Length[IntegerDigits[n, 5]] - 1}]; Array[a, 105] (* Jean-François Alcover, Dec 31 2021 *)
-
PARI
a(n) = sum(k=1, logint(n, 5), n % 5^k); for(n=1, 100, print1(a(n), ", ")); \\ (after Michel Marcus's program in A049804)
Formula
Conjecture: a(5*n+r) = 5*a(n) + r*A110592(n) = 5*a(n) + r*(floor(log_5(n)) + 1) for n >= 1 and r = 0, 1, 2, 3, 4.
If the conjecture above is true, the g.f. A(x) satisfies A(x) = 5*(1 + x + x^2 + x^3 + x^4)*A(x^5) + x*(1 + 2*x + 3*x^2 + 4*x^3)/(1 - x^5) * Sum_{k >= 1} x^(5^k).
Comments