cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330358 a(n) = n mod 5 + n mod 25 + ... + n mod 5^k, where 5^k <= n < 5^(k+1).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 2, 4, 6, 8, 5, 7, 9, 11, 13, 10, 12, 14, 16, 18, 15, 17, 19, 21, 23, 20, 22, 24, 26, 28, 0, 2, 4, 6, 8, 5, 7, 9, 11, 13, 10, 12, 14, 16, 18, 15, 17, 19, 21, 23, 20, 22, 24, 26, 28, 0, 2, 4, 6, 8, 5, 7, 9, 11, 13, 10
Offset: 1

Views

Author

Petros Hadjicostas, Dec 12 2019

Keywords

Comments

Conjecture: For b >= 2, consider the function s(n,b) = Sum_{1 <= b^j <= n} (n mod b^j) from p. 8 in Dearden et al. (2011). Then s(b*n + r, b) = b*s(n,b) + r*N(n,b) for 0 <= r <= b-1, where N(n,b) = floor(log_b(n)) + 1 is the number of digits in the base-b representation of n. As initial conditions, we have s(n,b) = 0 for 1 <= n <= b. (This is a generalization of a result by Robert Israel in A049802.)
Here b = 5 and a(n) = s(n,5).
We have N(n,2) = A070939(n), N(n,3) = A081604(n), N(n,4) = A110591(n), and N(n,5) = A110592(n).
If A_b(x) = Sum_{n >= 1} s(n,b)*x^n is the g.f. of the sequence (s(n,b): n >= 1) and the above conjecture is correct, then it can be proved that A_b(x) = b * A_b(x^b) * (1-x^b)/(1-x) + x * ((b-1)*x^b - b*x^(b-1) + 1)/((1-x)^2 * (1-x^b)) * Sum_{k >= 1} x^(b^k).

Crossrefs

Programs

  • Maple
    a:= n-> add(irem(n, 5^j), j=1..ilog[5](n)):
    seq(a(n), n=1..105);  # Alois P. Heinz, Dec 13 2019
  • Mathematica
    a[n_] := Sum[Mod[n, 5^j], {j, 1, Length[IntegerDigits[n, 5]] - 1}];
    Array[a, 105] (* Jean-François Alcover, Dec 31 2021 *)
  • PARI
    a(n) = sum(k=1, logint(n, 5), n % 5^k);
    for(n=1, 100, print1(a(n), ", ")); \\ (after Michel Marcus's program in A049804)

Formula

Conjecture: a(5*n+r) = 5*a(n) + r*A110592(n) = 5*a(n) + r*(floor(log_5(n)) + 1) for n >= 1 and r = 0, 1, 2, 3, 4.
If the conjecture above is true, the g.f. A(x) satisfies A(x) = 5*(1 + x + x^2 + x^3 + x^4)*A(x^5) + x*(1 + 2*x + 3*x^2 + 4*x^3)/(1 - x^5) * Sum_{k >= 1} x^(5^k).