A330452 Number of set partitions of strict multiset partitions of integer partitions of n.
1, 1, 2, 7, 13, 34, 81, 175, 403, 890, 1977, 4262, 9356, 19963, 42573, 90865, 191206, 401803, 837898, 1744231, 3607504, 7436628, 15254309, 31185686, 63552725, 128963236, 260933000, 526140540, 1057927323, 2120500885, 4239012067, 8449746787, 16799938614
Offset: 0
Keywords
Examples
The a(4) = 13 partitions: ((4)) ((22)) ((31)) ((211)) ((1111)) ((1)(3)) ((1)(21)) ((1)(111)) ((1))((3)) ((2)(11)) ((1))((111)) ((1))((21)) ((2))((11))
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
Crossrefs
Programs
-
Mathematica
ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]]; Table[Length[Select[ppl[n,3],UnsameQ@@Join@@#&]],{n,0,10}]
-
PARI
\\ here BellP is A000110 as series. BellP(n)={serlaplace(exp( exp(x + O(x*x^n)) - 1))} seq(n)={my(b=BellP(n), v=Vec(prod(k=1, n, (1 + x^k*y + O(x*x^n))^numbpart(k)))); vector(#v, n, my(r=v[n]); sum(k=0, n-1, polcoeff(b,k)*polcoef(r,k)))} \\ Andrew Howroyd, Dec 29 2019
Extensions
Terms a(18) and beyond from Andrew Howroyd, Dec 29 2019
Comments