A330459 Number of set partitions of set-systems with total sum n.
1, 1, 1, 4, 6, 11, 26, 42, 78, 148, 280, 481, 867, 1569, 2742, 4933, 8493, 14857, 25925, 44877, 77022, 132511, 226449, 385396, 657314, 1111115, 1875708, 3157379, 5309439, 8885889, 14861478, 24760339, 41162971, 68328959, 113099231, 186926116, 308230044
Offset: 0
Keywords
Examples
The a(6) = 26 partitions: ((6)) ((15)) ((123)) ((1)(2)(12)) ((24)) ((1)(14)) ((1))((2)(12)) ((1)(5)) ((1)(23)) ((12))((1)(2)) ((2)(4)) ((2)(13)) ((2))((1)(12)) ((1))((5)) ((3)(12)) ((1))((2))((12)) ((2))((4)) ((1))((14)) ((1))((23)) ((1)(2)(3)) ((2))((13)) ((3))((12)) ((1))((2)(3)) ((2))((1)(3)) ((3))((1)(2)) ((1))((2))((3))
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
Crossrefs
Programs
-
Mathematica
ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]]; Table[Length[Select[ppl[n,3],And[UnsameQ@@Join@@#,And@@UnsameQ@@@Join@@#]&]],{n,0,10}]
-
PARI
\\ here L is A000009 and BellP is A000110 as series. L(n)={eta(x^2 + O(x*x^n))/eta(x + O(x*x^n))} BellP(n)={serlaplace(exp( exp(x + O(x*x^n)) - 1))} seq(n)={my(c=L(n), b=BellP(n), v=Vec(prod(k=1, n, (1 + x^k*y + O(x*x^n))^polcoef(c, k)))); vector(#v, n, my(r=v[n]); sum(k=0, n-1, polcoeff(b,k)*polcoef(r,k)))} \\ Andrew Howroyd, Dec 29 2019
Extensions
Terms a(18) and beyond from Andrew Howroyd, Dec 29 2019
Comments