A330463 Triangle read by rows where T(n,k) is the number of k-element sets of nonempty multisets of positive integers with total sum n.
1, 0, 1, 0, 2, 0, 0, 3, 2, 0, 0, 5, 4, 0, 0, 0, 7, 11, 1, 0, 0, 0, 11, 20, 6, 0, 0, 0, 0, 15, 40, 16, 0, 0, 0, 0, 0, 22, 68, 40, 3, 0, 0, 0, 0, 0, 30, 120, 91, 11, 0, 0, 0, 0, 0, 0, 42, 195, 186, 41, 0, 0, 0, 0, 0, 0, 0, 56, 320, 367, 105, 3, 0, 0, 0, 0, 0, 0
Offset: 0
Examples
Triangle begins: 1 0 1 0 2 0 0 3 2 0 0 5 4 0 0 0 7 11 1 0 0 0 11 20 6 0 0 0 0 15 40 16 0 0 0 0 0 22 68 40 3 0 0 0 0 ... Row n = 5 counts the following sets of multisets: {{5}} {{1},{4}} {{1},{2},{1,1}} {{1,4}} {{2},{3}} {{2,3}} {{1},{1,3}} {{1,1,3}} {{1},{2,2}} {{1,2,2}} {{2},{1,2}} {{1,1,1,2}} {{3},{1,1}} {{1,1,1,1,1}} {{1},{1,1,2}} {{1,1},{1,2}} {{2},{1,1,1}} {{1},{1,1,1,1}} {{1,1},{1,1,1}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows n = 0..50)
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial( combinat[numbpart](i), j)*expand(b(n-i*j, i-1)*x^j), j=0..n/i))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)): seq(T(n), n=0..14); # Alois P. Heinz, Dec 30 2019
-
Mathematica
ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]]; Table[Length[Select[ppl[n,2],And[UnsameQ@@#,Length[#]==k]&]],{n,0,10},{k,0,n}] (* Second program: *) b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[ PartitionsP[i], j]*Expand[b[n - i*j, i - 1]*x^j], {j, 0, n/i}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n]]; T /@ Range[0, 14] // Flatten (* Jean-François Alcover, May 18 2021, after Alois P. Heinz *)
-
PARI
A(n)={my(v=Vec(prod(k=1, n, (1 + x^k*y + O(x*x^n))^numbpart(k)))); vector(#v, n, Vecrev(v[n],n))} {my(T=A(12)); for(n=1, #T, print(T[n]))} \\ Andrew Howroyd, Dec 29 2019
Formula
G.f.: Product_{j>=1} (1 + y*x^j)^A000041(j). - Andrew Howroyd, Dec 29 2019