A330467 Number of series-reduced rooted trees whose leaves are multisets whose multiset union is a strongly normal multiset of size n.
1, 1, 4, 18, 154, 1614, 23733, 396190, 8066984, 183930948, 4811382339, 138718632336, 4451963556127, 155416836338920, 5920554613563841, 242873491536944706, 10725017764009207613, 505671090907469848248, 25415190929321149684700, 1354279188424092012064226
Offset: 0
Keywords
Examples
The a(3) = 18 trees: {1,1,1} {1,1,2} {1,2,3} {{1},{1,1}} {{1},{1,2}} {{1},{2,3}} {{1},{1},{1}} {{2},{1,1}} {{2},{1,3}} {{1},{{1},{1}}} {{1},{1},{2}} {{3},{1,2}} {{1},{{1},{2}}} {{1},{2},{3}} {{2},{{1},{1}}} {{1},{{2},{3}}} {{2},{{1},{3}}} {{3},{{1},{2}}}
Crossrefs
Programs
-
Mathematica
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; multing[t_,n_]:=Array[(t+#-1)/#&,n,1,Times]; amemo[m_]:=amemo[m]=1+Sum[Product[multing[amemo[s[[1]]],Length[s]],{s,Split[c]}],{c,Select[mps[m],Length[#]>1&]}]; Table[Sum[amemo[m],{m,strnorm[n]}],{n,0,5}]
-
PARI
\\ See links in A339645 for combinatorial species functions. cycleIndexSeries(n)={my(v=vector(n), p=sExp(x*sv(1) + O(x*x^n))); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sExp(x*Ser(v[1..n])), n ) + polcoef(p, n)); 1 + x*Ser(v)} StronglyNormalLabelingsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 28 2020
Extensions
Terms a(10) and beyond from Andrew Howroyd, Dec 28 2020
Comments