cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330592 a(n) is the number of subsets of {1,2,...,n} that contain exactly two odd numbers.

Original entry on oeis.org

0, 0, 2, 4, 12, 24, 48, 96, 160, 320, 480, 960, 1344, 2688, 3584, 7168, 9216, 18432, 23040, 46080, 56320, 112640, 135168, 270336, 319488, 638976, 745472, 1490944, 1720320, 3440640, 3932160, 7864320, 8912896, 17825792, 20054016, 40108032, 44826624, 89653248
Offset: 1

Views

Author

Enrique Navarrete, Dec 18 2019

Keywords

Comments

2*a(n-1) for n>1 is the number of subsets of {1,2,...,n} that contain exactly two even numbers. For example, for n=5, 2*a(4)=8 and the 8 subsets are {2,4}, {1,2,4}, {2,3,4}, {2,4,5}, {1,2,3,4}, {1,2,4,5}, {2,3,4,5}, {1,2,3,4,5}. - Enrique Navarrete, Dec 20 2019

Examples

			For n=5, a(5)=12 and the 12 subsets are {1,3}, {1,5}, {3,5}, {1,2,3}, {1,2,5}, {1,3,4}, {1,4,5}, {2,3,5}, {3,4,5}, {1,2,3,4}, {1,2,4,5}, {2,3,4,5}.
		

Crossrefs

Cf. A089822 (with exactly two primes).

Programs

  • Magma
    [IsEven(n) select Binomial(n div 2,2)*2^(n div 2) else Binomial((n+1) div 2,2)*2^((n-1) div 2):n in [1..40]]; // Marius A. Burtea, Dec 19 2019
    
  • Mathematica
    a[n_] := If[OddQ[n], Binomial[(n + 1)/2, 2]*2^((n - 1)/2), Binomial[n/2, 2]*2^(n/2)]; Array[a, 38] (* Amiram Eldar, Mar 24 2022 *)
  • PARI
    concat([0,0], Vec(2*x^3*(1 + 2*x) / (1 - 2*x^2)^3 + O(x^40))) \\ Colin Barker, Dec 20 2019

Formula

a(n) = binomial((n+1)/2,2) * 2^((n-1)/2), n odd;
a(n) = binomial(n/2,2) * 2^(n/2), n even.
G.f.: 2*(2*x+1)*x^3/(1-2*x^2)^3.
a(n) = 6*a(n-2) - 12*a(n-4) + 8*a(n-6) for n>6. - Colin Barker, Dec 20 2019
From Amiram Eldar, Mar 24 2022: (Start)
Sum_{n>=3} 1/a(n) = 3*(1-log(2)).
Sum_{n>=3} (-1)^(n+1)/a(n) = 1-log(2). (End)