A330592 a(n) is the number of subsets of {1,2,...,n} that contain exactly two odd numbers.
0, 0, 2, 4, 12, 24, 48, 96, 160, 320, 480, 960, 1344, 2688, 3584, 7168, 9216, 18432, 23040, 46080, 56320, 112640, 135168, 270336, 319488, 638976, 745472, 1490944, 1720320, 3440640, 3932160, 7864320, 8912896, 17825792, 20054016, 40108032, 44826624, 89653248
Offset: 1
Examples
For n=5, a(5)=12 and the 12 subsets are {1,3}, {1,5}, {3,5}, {1,2,3}, {1,2,5}, {1,3,4}, {1,4,5}, {2,3,5}, {3,4,5}, {1,2,3,4}, {1,2,4,5}, {2,3,4,5}.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,6,0,-12,0,8).
Crossrefs
Cf. A089822 (with exactly two primes).
Programs
-
Magma
[IsEven(n) select Binomial(n div 2,2)*2^(n div 2) else Binomial((n+1) div 2,2)*2^((n-1) div 2):n in [1..40]]; // Marius A. Burtea, Dec 19 2019
-
Mathematica
a[n_] := If[OddQ[n], Binomial[(n + 1)/2, 2]*2^((n - 1)/2), Binomial[n/2, 2]*2^(n/2)]; Array[a, 38] (* Amiram Eldar, Mar 24 2022 *)
-
PARI
concat([0,0], Vec(2*x^3*(1 + 2*x) / (1 - 2*x^2)^3 + O(x^40))) \\ Colin Barker, Dec 20 2019
Formula
a(n) = binomial((n+1)/2,2) * 2^((n-1)/2), n odd;
a(n) = binomial(n/2,2) * 2^(n/2), n even.
G.f.: 2*(2*x+1)*x^3/(1-2*x^2)^3.
a(n) = 6*a(n-2) - 12*a(n-4) + 8*a(n-6) for n>6. - Colin Barker, Dec 20 2019
From Amiram Eldar, Mar 24 2022: (Start)
Sum_{n>=3} 1/a(n) = 3*(1-log(2)).
Sum_{n>=3} (-1)^(n+1)/a(n) = 1-log(2). (End)
Comments